BibTex RIS Cite

SYNTHESIS and ANTIMICROBIAL ACTIVITY of SOME NOVEL QUINOXALINE HYDRAZONES

Year 2015, Volume: 4 Issue: 1, 31 - 39, 12.01.2016

Abstract

A new class of 10 novel quinoxaline hydrazones was synthesized to examine their antimicrobial activity. The structural of the compounds was confirmed by IR, 1H-NMR, and MS spectral data and elemental analyses. Antimicrobial activity of the compounds was evaluated against 3 fungal and 7 bacterial strains by Micro-broth dilution assay. All of the synthesized compounds indicated showed significant antibacterial activity against Pseudomonas aeruginosa. Furthermore, antibacterial activity of the 2,4-difluoro substituted compound 4b displayed two fold better activity than chloramphenicol against this bacterial strain.  

References

  • Akhand, S.S., Pettit, R.S., Gardner, T.E., Anderson, G.G. (2014). New treatments in development for Pseudomonas aeruginosa Infections in the Lungs of Individuals with Cystic Fibrosis. Orphan Drugs Research and Reviews 4.
  • Backes, G.L., Neumann, D.M., Jursic, B.S. (2014). Synthesis and Antifungal Activity of Substituted Salicylaldehyde Hydrazones, Hydrazides and Sulfohydrazides. Bioorganic & Medicinal Chemistry 22(17), 4629–4636.
  • Becker, I. (2008). Preparation of derivatives of 1-(2-pyrimidinyl) Piperazine as Potential Antianxiety, Antidepressant, and Antipsychotic Agents. Journal of Heterocyclic Chemistry 45: 1005-1022.
  • Carta, A., Paglietti, G., Nikookar, M.E.R., Sanna, P., Sechi, L., Zanetti, S. (2002). Novel Substituted Quinoxaline 1,4-dioxides with in vitro Antimycobacterial and Anticandidal Activity. European Journal of Medicinal Chemistry 37(5), 355–366.
  • Chen, C.Y., Lin, T.P., Chen, C.K., Lin, S.C., Tseng, M.C., Wen, Y.S., Sun, S.S. (2008). New Chromogenic and Fluorescent Probes for Anion Detection:  Formation of a [2+2] Supramolecular Complex on Addition of Fluoride with Positive Homotropic Cooperativity. Journal of Organic Chemistry 73(3), 900-911.
  • CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Approved Standard, CLSI Document M7-A7, seventhed. (2006). ISBN1-56238-587-9.
  • El-Faham, A., El-Massry, A.M., Amer, A., Gohar, Y.M. (2002). A Versatile Synthetic Route to Chiral Quinoxaline Derivatives from Aminoacids Precursors. Letters Peptide Science 9(1), 49–54.
  • El-Sabbagh, OI., El-Sadek, M.E., Lashine, S.M., Yassin, S.H., El-Nabtity, S.M. (2009). Synthesis of new 2(1H)-Quinoxalinone Derivativesfor Antimicrobial and Antiinflammatory Evaluation. Medicinal Chemistry Research 18(9), 782–797.
  • Ishikawa, H., Sugiyama, T., Kurita, K., Yokoyama, A. (2012). Synthesis and Antimicrobial Activity of 2,3Bis(bromomethyl)quinoxaline Derivatives. Bioorganic Chemistry 41:1–5.
  • Ishikawa, H., Sugiyama, T., Yokoyama, A. (2013). Synthesis of 2,3bis(halomethyl)quinoxaline Derivatives and Evaluation of Their Antibacterial and Antifungal Activities. Chemical and Pharmaceutical Bulletin 61(4), 438–444.
  • Kamal, A., Babu, K.S., Faazil, S., Ali Hussaini, S.M., Shaik, A.B. (2014). L-Proline Mediated Synthesis of Quinoxalines; Evaluation of Cytotoxic and Antimicrobial Activity. Royal Society of Chemistry 4(86), 46369–46377.
  • Khaksar, S., Tajbakhsh, M., Gholami, M., Rostamnezhad, F.A. (2014). Highly efficient Procedure for the Synthesis of Quinoxaline Derivatives using Polyvinylpolypyrrolidone Supported Triflic Acid Catalyst. Chinese Chemical Letters 25(9), 1287–1290.
  • Khan, J., Wahab, A., Qayyum, A., Jamshed, S. (2014). Drug Resistance Pattern of Pseudomonas aeruginosa isolates at PIMS Hospital. Journal of Chemical and Pharmaceutical Research 6(11), 715-719.
  • Kotharkar, S.A., Shinde, D.B. (2006). Synthesis of antimicrobial 2,9,10-trisubstituted-6-oxo7,12-dihydro-chromeno[3,4-b]quinoxalines. Bioorganic & Medicinal Chemistry Letters 16(24), 6181–6184.
  • Nagaraj, K., Ambika, S., Arunachalam, S. (2015). Synthesis, CMC Determination, and Intercalativebinding Interaction with Nucleic Acid of Asurfactant–copper(II) complex with Modified Phenanthroline Ligand (dpq). Journal of Biomolecular Structure and Dynamics 33(2), 274-288.
  • Narasimhan, B., Kumar, P., Sharma, D. (2010). Biological Activities of Hydrazide Derivatives in the New Millennium. Acta Pharmaceutica Sciencia 52:169-180.
  • Poole, K. (2014). Stress Responses as Determinants of Antimicrobial Resistance in Pseudomonas aeruginosa: Multidrug Efflux and More. Canadian Journal of Microbiology 60:783-791.
  • Ramalingam, P., Ganapaty, S., Rao, C.B. (2010). In vitro Antitubercular and Antimicrobial Activities of 1-Substituted Quinoxaline-2,3(1H,4H)-diones. Bioorganic & Medicinal Chemistry Letters 20(1), 406– 408.
  • Sıngh, D.C.P., Hashım, S.R., Sınghal R.G. (2011). Synthesis and Antimicrobial Activity of Some New Thioether Derivatives of Quinoxaline. E-Journal of Chemistry 8(2), 635-642.
  • Soliman, A.M., Amer, A.A. (2012). Synthesis and Antimicrobial Activity of Some Novel Quinoxalines. Synthetic Communications 42(10), 1401–1410.
  • Ulbrich, K., Subr, V. (2004). Polymeric Anticancer Drugs with pH-controlled Activation. Advanced Drug Delivery Reviews, 56(7), 1023-1050.
  • Veerappa, K., Babu, Y., Siddanakatte, D. (2014). The Influence of Imipenem Resistant Metallo-Beta-Lactamase Positive and Negative Pseudomonas aeruginosa Nosocomial Infections on Mortality and Morbidity. Journal of Natural Science Biology & Medicine 5(2), 345-351.
  • Vieira, M., Pinheiro, C., Fernandes, R., Noronha, J.P., Prudencio, C. (2014). Antimicrobial Activity of Quinoxaline 1,4Dioxide with 2- and 3-substituted Derivatives. Microbiol Research 169(4), 287– 293.
  • Yan-Yan, H. (2010). An Efficient Synthesis of 3-(indol-3-yl)quinoxalin-2-ones with TfOHCatalyzed Friedel–Crafts Type Coupling Reaction in Air. Tetrahedron Letters 51(15), 2023-2028.
  • Yurttaş, L., Özkay, Y., Karaca, H., Tunalı, Y., Kaplancıklı. Z.A. (2013). Synthesis and Antimicrobial Evaluation of Some 2,5Disubstituted Benzimidazole Derivatives. Letters in Drug Design & Discovery 10(6), 486-491.
  • Wayne, P.A. (2008). CLSI document M27-A3, Clinical and Laboratory Standards Institute.
  • Wu, J., Wang, J., Hu, D., He, M., Jin, L., Song, B. (2012). Synthesis and Antifungal Activity of Novel Pyrazolecarboxamide Derivatives Containing Hydrazone Moiety. Chemistry Central Journal 6:51.
  • Zhang, M., Dai, Z.C., Qian, S.S., Liu, J.Y., Xiao, Y., Lu, A.M., Zhu, H.L., Wang, J.X., Ye, Y.H. (2014). Design, Synthesis, Antifungal, and Antioxidant Activities of (e‑6-((2Phenylhydrazono)methyl)quinoxaline Derivatives. Journal of Agricultural and Food Chemistry 62(40), 9637−9643.

BAZI YENİ KİNOKSALİN HİDRAZONLARIN SENTEZİ ve ANTİMİKROBİYAL AKTİVİTELERİ

Year 2015, Volume: 4 Issue: 1, 31 - 39, 12.01.2016

Abstract

10 yeni kinoksalin hidrazondan oluşan yeni bir grup aktimikrobiyal aktivitesi incelenmek üzere sentezlenmiştir. Bileşiklerin yapıları IR, 1H-NMR, MS spektral ve elemental analiz ile aydınlatılmıştır. Bileşiklerin antimikrobiyal aktiviteleri Mikro-broth dilüsyon yöntemi ile 3 fungus ve 7 bakteri türüne karşı değerlendirilmiştir. Sentezlenen bütün bileşikler Pseudomonas aeruginosa’ ya karşı önemli antibakteriyal aktivite göstermiştir. Ayrıca, 2,4-difloro yapısı içeren 4b bileşiği Pseudomonas aeruginosa’ ya karşı kloramfenikolden 2 kat daha iyi antibakteriyal aktivite göstermiştir

References

  • Akhand, S.S., Pettit, R.S., Gardner, T.E., Anderson, G.G. (2014). New treatments in development for Pseudomonas aeruginosa Infections in the Lungs of Individuals with Cystic Fibrosis. Orphan Drugs Research and Reviews 4.
  • Backes, G.L., Neumann, D.M., Jursic, B.S. (2014). Synthesis and Antifungal Activity of Substituted Salicylaldehyde Hydrazones, Hydrazides and Sulfohydrazides. Bioorganic & Medicinal Chemistry 22(17), 4629–4636.
  • Becker, I. (2008). Preparation of derivatives of 1-(2-pyrimidinyl) Piperazine as Potential Antianxiety, Antidepressant, and Antipsychotic Agents. Journal of Heterocyclic Chemistry 45: 1005-1022.
  • Carta, A., Paglietti, G., Nikookar, M.E.R., Sanna, P., Sechi, L., Zanetti, S. (2002). Novel Substituted Quinoxaline 1,4-dioxides with in vitro Antimycobacterial and Anticandidal Activity. European Journal of Medicinal Chemistry 37(5), 355–366.
  • Chen, C.Y., Lin, T.P., Chen, C.K., Lin, S.C., Tseng, M.C., Wen, Y.S., Sun, S.S. (2008). New Chromogenic and Fluorescent Probes for Anion Detection:  Formation of a [2+2] Supramolecular Complex on Addition of Fluoride with Positive Homotropic Cooperativity. Journal of Organic Chemistry 73(3), 900-911.
  • CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Approved Standard, CLSI Document M7-A7, seventhed. (2006). ISBN1-56238-587-9.
  • El-Faham, A., El-Massry, A.M., Amer, A., Gohar, Y.M. (2002). A Versatile Synthetic Route to Chiral Quinoxaline Derivatives from Aminoacids Precursors. Letters Peptide Science 9(1), 49–54.
  • El-Sabbagh, OI., El-Sadek, M.E., Lashine, S.M., Yassin, S.H., El-Nabtity, S.M. (2009). Synthesis of new 2(1H)-Quinoxalinone Derivativesfor Antimicrobial and Antiinflammatory Evaluation. Medicinal Chemistry Research 18(9), 782–797.
  • Ishikawa, H., Sugiyama, T., Kurita, K., Yokoyama, A. (2012). Synthesis and Antimicrobial Activity of 2,3Bis(bromomethyl)quinoxaline Derivatives. Bioorganic Chemistry 41:1–5.
  • Ishikawa, H., Sugiyama, T., Yokoyama, A. (2013). Synthesis of 2,3bis(halomethyl)quinoxaline Derivatives and Evaluation of Their Antibacterial and Antifungal Activities. Chemical and Pharmaceutical Bulletin 61(4), 438–444.
  • Kamal, A., Babu, K.S., Faazil, S., Ali Hussaini, S.M., Shaik, A.B. (2014). L-Proline Mediated Synthesis of Quinoxalines; Evaluation of Cytotoxic and Antimicrobial Activity. Royal Society of Chemistry 4(86), 46369–46377.
  • Khaksar, S., Tajbakhsh, M., Gholami, M., Rostamnezhad, F.A. (2014). Highly efficient Procedure for the Synthesis of Quinoxaline Derivatives using Polyvinylpolypyrrolidone Supported Triflic Acid Catalyst. Chinese Chemical Letters 25(9), 1287–1290.
  • Khan, J., Wahab, A., Qayyum, A., Jamshed, S. (2014). Drug Resistance Pattern of Pseudomonas aeruginosa isolates at PIMS Hospital. Journal of Chemical and Pharmaceutical Research 6(11), 715-719.
  • Kotharkar, S.A., Shinde, D.B. (2006). Synthesis of antimicrobial 2,9,10-trisubstituted-6-oxo7,12-dihydro-chromeno[3,4-b]quinoxalines. Bioorganic & Medicinal Chemistry Letters 16(24), 6181–6184.
  • Nagaraj, K., Ambika, S., Arunachalam, S. (2015). Synthesis, CMC Determination, and Intercalativebinding Interaction with Nucleic Acid of Asurfactant–copper(II) complex with Modified Phenanthroline Ligand (dpq). Journal of Biomolecular Structure and Dynamics 33(2), 274-288.
  • Narasimhan, B., Kumar, P., Sharma, D. (2010). Biological Activities of Hydrazide Derivatives in the New Millennium. Acta Pharmaceutica Sciencia 52:169-180.
  • Poole, K. (2014). Stress Responses as Determinants of Antimicrobial Resistance in Pseudomonas aeruginosa: Multidrug Efflux and More. Canadian Journal of Microbiology 60:783-791.
  • Ramalingam, P., Ganapaty, S., Rao, C.B. (2010). In vitro Antitubercular and Antimicrobial Activities of 1-Substituted Quinoxaline-2,3(1H,4H)-diones. Bioorganic & Medicinal Chemistry Letters 20(1), 406– 408.
  • Sıngh, D.C.P., Hashım, S.R., Sınghal R.G. (2011). Synthesis and Antimicrobial Activity of Some New Thioether Derivatives of Quinoxaline. E-Journal of Chemistry 8(2), 635-642.
  • Soliman, A.M., Amer, A.A. (2012). Synthesis and Antimicrobial Activity of Some Novel Quinoxalines. Synthetic Communications 42(10), 1401–1410.
  • Ulbrich, K., Subr, V. (2004). Polymeric Anticancer Drugs with pH-controlled Activation. Advanced Drug Delivery Reviews, 56(7), 1023-1050.
  • Veerappa, K., Babu, Y., Siddanakatte, D. (2014). The Influence of Imipenem Resistant Metallo-Beta-Lactamase Positive and Negative Pseudomonas aeruginosa Nosocomial Infections on Mortality and Morbidity. Journal of Natural Science Biology & Medicine 5(2), 345-351.
  • Vieira, M., Pinheiro, C., Fernandes, R., Noronha, J.P., Prudencio, C. (2014). Antimicrobial Activity of Quinoxaline 1,4Dioxide with 2- and 3-substituted Derivatives. Microbiol Research 169(4), 287– 293.
  • Yan-Yan, H. (2010). An Efficient Synthesis of 3-(indol-3-yl)quinoxalin-2-ones with TfOHCatalyzed Friedel–Crafts Type Coupling Reaction in Air. Tetrahedron Letters 51(15), 2023-2028.
  • Yurttaş, L., Özkay, Y., Karaca, H., Tunalı, Y., Kaplancıklı. Z.A. (2013). Synthesis and Antimicrobial Evaluation of Some 2,5Disubstituted Benzimidazole Derivatives. Letters in Drug Design & Discovery 10(6), 486-491.
  • Wayne, P.A. (2008). CLSI document M27-A3, Clinical and Laboratory Standards Institute.
  • Wu, J., Wang, J., Hu, D., He, M., Jin, L., Song, B. (2012). Synthesis and Antifungal Activity of Novel Pyrazolecarboxamide Derivatives Containing Hydrazone Moiety. Chemistry Central Journal 6:51.
  • Zhang, M., Dai, Z.C., Qian, S.S., Liu, J.Y., Xiao, Y., Lu, A.M., Zhu, H.L., Wang, J.X., Ye, Y.H. (2014). Design, Synthesis, Antifungal, and Antioxidant Activities of (e‑6-((2Phenylhydrazono)methyl)quinoxaline Derivatives. Journal of Agricultural and Food Chemistry 62(40), 9637−9643.
There are 28 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Esra Başyiğit This is me

Ulviye Acar Çevik

Yusuf Özkay

Hülya Karaca Gençer

Ümit Uçucu This is me

Publication Date January 12, 2016
Published in Issue Year 2015 Volume: 4 Issue: 1

Cite

APA Başyiğit, E., Acar Çevik, U., Özkay, Y., Karaca Gençer, H., et al. (2016). SYNTHESIS and ANTIMICROBIAL ACTIVITY of SOME NOVEL QUINOXALINE HYDRAZONES. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, 4(1), 31-39. https://doi.org/10.18036/btdc.57492
AMA Başyiğit E, Acar Çevik U, Özkay Y, Karaca Gençer H, Uçucu Ü. SYNTHESIS and ANTIMICROBIAL ACTIVITY of SOME NOVEL QUINOXALINE HYDRAZONES. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. January 2016;4(1):31-39. doi:10.18036/btdc.57492
Chicago Başyiğit, Esra, Ulviye Acar Çevik, Yusuf Özkay, Hülya Karaca Gençer, and Ümit Uçucu. “SYNTHESIS and ANTIMICROBIAL ACTIVITY of SOME NOVEL QUINOXALINE HYDRAZONES”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 4, no. 1 (January 2016): 31-39. https://doi.org/10.18036/btdc.57492.
EndNote Başyiğit E, Acar Çevik U, Özkay Y, Karaca Gençer H, Uçucu Ü (January 1, 2016) SYNTHESIS and ANTIMICROBIAL ACTIVITY of SOME NOVEL QUINOXALINE HYDRAZONES. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 4 1 31–39.
IEEE E. Başyiğit, U. Acar Çevik, Y. Özkay, H. Karaca Gençer, and Ü. Uçucu, “SYNTHESIS and ANTIMICROBIAL ACTIVITY of SOME NOVEL QUINOXALINE HYDRAZONES”, Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, vol. 4, no. 1, pp. 31–39, 2016, doi: 10.18036/btdc.57492.
ISNAD Başyiğit, Esra et al. “SYNTHESIS and ANTIMICROBIAL ACTIVITY of SOME NOVEL QUINOXALINE HYDRAZONES”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 4/1 (January 2016), 31-39. https://doi.org/10.18036/btdc.57492.
JAMA Başyiğit E, Acar Çevik U, Özkay Y, Karaca Gençer H, Uçucu Ü. SYNTHESIS and ANTIMICROBIAL ACTIVITY of SOME NOVEL QUINOXALINE HYDRAZONES. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2016;4:31–39.
MLA Başyiğit, Esra et al. “SYNTHESIS and ANTIMICROBIAL ACTIVITY of SOME NOVEL QUINOXALINE HYDRAZONES”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, vol. 4, no. 1, 2016, pp. 31-39, doi:10.18036/btdc.57492.
Vancouver Başyiğit E, Acar Çevik U, Özkay Y, Karaca Gençer H, Uçucu Ü. SYNTHESIS and ANTIMICROBIAL ACTIVITY of SOME NOVEL QUINOXALINE HYDRAZONES. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2016;4(1):31-9.