Review
BibTex RIS Cite

Overview of 3D Technology Applications in Plants: Phenomic, Mapping with Robotic Systems, Architectural Designs, Plant and Animal Tissue Culture Approaches

Year 2018, Volume: 7 Issue: 2, 239 - 255, 17.08.2018
https://doi.org/10.18036/aubtdc.378468

Abstract

The fact
that two-dimensional studies are insufficient about complex plant forms and
allowing emerging technologies to give more detailed data leads researchers to
search for new alternatives. The developments in plant biotechnology have
changed rapidly over the past two decades, depending on the technological
progresses such as microscopy, structural and functional plant modelling,
phenotyping and genomic studies. Especially the studies which is called
“phenomic” and plant researches working with phenotyping, are the popular
research areas which interest to the researchers on recent years.

Nowadays
scientific researches and production techniques in agriculture, have been
carried out more stability as digitally and visually. Fast improvements on robotic
and sensor technologies come together with agricultural research have been
opened up new horizons on agricultural biotechnology, for the plant
architecture and even for plant tissues which is an excellent model for many
researchers. Along with the phenotyping research on agricultural research, three-dimentional
biotechnology is used on detection with robotic sensors and mapping. Also
through computer algorithms which gave 3D structure of plant architectural
designs, different products and artworks can be produced.



The usage of 3D printing technologies to identify
the plant tissues structure and function and for improvement of new culture systems
to use at plant tissue culture techniques has been an important approach
nowadays. Recently, potential of plant forms to be use in scaffold production
have been studied because of the micro similarity of plant tissues with animal
tissues in animal tissue engineering. Microfluidic systems, mostly used in
animal cell culture techniques, are also intensively studied in research
related to plant cells. The data obtained by all these techniques are used in
many fields ranging from pest control on agriculture to the design of
artificial organs on medicine, from the programming of computer games to
forestry. In this article, we had tried to summarize studies about 3D
technology on plant systems
.

References

  • Brodersen C R, Rodd A B. New frontiers in the three-dimensional visualization of plant structure and function. American Journal of Botany 2015; 103 (2): 184-188.
  • Chaudhury, A., Ward, C., Talasaz, A. Ivanov, A.G., Brophy, M., Grodzinski, B., Hüner, N.P.A., Patel, R.V. and Barroni, J.L. 2017. Machine Vision System for 3D Plant Phenotyping. https://arxiv.org/abs/1705.00540
  • Wen W, Guo X, Wang Y, Zhao C, Liao W. Constructing a three-dimensional resource database of plants using situ-measured morphological data. 2016 ASABE Annual International Meeting. Orlando, Florida July 17-20, 2016. Paper Number: 162449020.
  • Pradal C, Boudon F, Nouguier C, Chopard J, Godin C. PlantGL: a Python-based geometric library for 3D plant modeling at different scales. Graphical Models 2009; 71: 1–21.
  • Peele B N. CS5643 Final Project: Modeling leaf venation patterns for use in 3D printing. Mechanical Engineering, Cornell University 2012.
  • Paulus S, Behmann J, Mahlein A K, Plümer L, Kuhlmann H. Low-Cost 3D Systems: Suitable Tools for Plant Phenotyping. Sensors 2014; 14: 3001-3018.
  • Omasa K, Hosoi F, Konishi A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. Journal of Experimental Botany 2007; 58(4): 881–898.
  • Lin Y. LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics? Computers and Electronics in Agriculture 2015;119: 61–73.
  • Bietresato M, Carabin G, Vidoni R, Gasparetta A, Mazzetto F. Evaluation of a LiDAR-based 3D-stereoscopic vision system for crop-monitoring applications. Computers and Electronics in Agriculture 2016; 124: 1–13.
  • Chaivivatrakul S, Tang L, Dailey M N, Namarmi A D. Automatic morphological trait characterization for corn plants via 3D holographic reconstruction. Computers and Electronics in Agriculture 2014; 109: 109-123.
  • Dhondt S, Wuyts N, Inzé D. Cell to whole-plant phenotyping: the best is yet to come. Trends in Plant Science 2013; 18 (8): 1360-1385.
  • An N, Welch S M, Markelz R J C, Baker R L, Palmer C M, Ta J, Maloof J N, Weinig, C. Quantifying time-series of leaf morphology using 2D and 3D photogrammetry methods for high-throughput plant phenotyping. Computers and Electronics in Agriculture 2017; 135: 222-232.
  • Chéné Y, Rousseau D, Lucidarme P, Bertheloot J, Caffier V, Morel P, Belin É, Chapeau-Blondeau F. On the use of depth camera for 3D phenotyping of entire plants. Computers and Electronics in Agriculture 2012; 82: 122–127.
  • Sodhi P, Vijayarangan S, Wettergreen D. In-field Segmentation and Identification of Plant Structures using 3D Imaging. Conference Paper, IEEE/RSJ International Conference on Intelligent Robots and Systems 24-28 September 2017, Vancouver, Canada. IEEE. pp. 5180-5187
  • Quan L, Tan P, Zeng G, Yuan L, Wang J, Kang S B. Image-based Plant Modeling. ACM Trans. on Graphics (SIGGRAPH) 2006; 25 (3): 772–778.
  • Zhang Y, Zhuang Z, Xiao Y, He Y. Rape plant NDVI 3D distribution based on structure from motion. Transactions of the Chinese Society of Agricultural Engineering 2015; 31 (17): 207-214.
  • Dhondt S, Gonzales N, Blomme J, Milde L, Daele T V, Akoleyen D V, Storme V, Coppens F, Beemster G T S, Inze D. High-resolution time-resolved imaging of in vitro Arabidopsis rosette growth. The Plant Journal 2014; 80:172-184.
  • Phattaralerphong J, Sathornkich J, Sinoquet H. A photographic gap fraction method for estimating leaf area of isolated trees: assessment with 3D digitized plants. Tree Physiology 2006; 20:1123-1136.
  • Dellen B, Scharr H, Torras C. Growth signatures of rosette plants from time-lapse video. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2015;12 (6): 1470–1478.
  • Tian T, Wu L, Henke M, Ali B, Zhou W, Buck-Sorlin G. Modeling Allometric Relationships in Leaves of Young Rapeseed (Brassica napus L.) Grown at Different Temperature Treatments. Front. Plant Sci. 2017; 8(313): 1-12.
  • Failmezger H, Jeagle B, Schrader A, Hülskamp M, Tresch A. Semi-automated 3D Leaf Reconstruction and Analysis of Trichome Patterning from Light Microscopic Images. PLoS Comput Biol. 2013; 9(4): 1-10.
  • Zheng Y, Gu S, Edelsbrunner H, Tomasi C, Benfey P. Detailed Reconstruction of 3D Plant Root Shape. 2011 IEEE International Conference on Computer Vision 2011; 11: 2026-2033.
  • Chen X, Ding Q, Blaszkiewicz Z, Sun J, Sun Q, He R, Li Y. Phenotyping for the Dynamics of feld wheat root system architecture. Scientific Reports 2017; 7 (37649): 1-11.
  • Chen X, Ding Q, Li Y, Xue J, He R. Three Dimensional Fractal Characteristics of Wheat Root System for Rice-Wheat Rotation in Southern China. Scientia Agricultura Sinica 2017; 50(3): 451-460.
  • Xu H, Maenhout P, Swanckaert J, Vandecasteele B, Sleutel S. Larger field than variety effect on belowground maize biomass and root system architecture. Day of Young Soil Scientist 2017.
  • Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X. Root system architecture: opportunities and constraints for genetic improvement of crops. TRENDS in Plant Science2007; 12.
  • Liang T, Knappett J A, Bengough A G, Ke Y X. Small-scale modelling of plant root systems using 3D printing, with applications to investigate the role of vegetation on earthquake-induced landslides. Landslides 2017; 14: 1747–1765.
  • Zhu J, Ingram P A, Benfey P N, Elich T. From lab to field, new approaches to phenotyping root system architecture. Current Opinion in Plant Biology 2011; 14: 310–317.
  • Mieszkalski L. The method of 3D reconstruction of apple shape. Part 2. Geometric 3D model of an apple using Bézier curves. Annals of Warsaw University of Life Sciences – SGGW, Agriculture No 69 (Agricultural and Forest Engineering) 2017; 69: 33-41.
  • Mieszkalski L. The method of 3D reconstruction of apple shape. Part 1. Apple shape mathematical modeling method. Annals of Warsaw University of Life Sciences – SGGW, Agriculture No 69 (Agricultural and Forest Engineering) 2017; 69: 23-32.
  • Abera M K, Verboven P, Herremans E, Defraeye T, Fanta S W, Ho Q T, Carmelist J, Nicolai B M. 3D Virtual Pome Fruit Tissue Generation Based on Cell Growth Modeling. Food Bioprocess Technology 2014; 7: 542-555.
  • Pandey V P, Singh S, Jaiswel N, Awasthi M, Pandey B, Dwivedi U N. Papaya fruit ripening: ROS metabolism, gene cloning, characterization and molecular docking of peroxidase. Journal of Molecular Catalysis B: Enzymatic 2013; 98: 98–105
  • Weiss B, Biber P. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robotics and Autonomous Systems 2011; 59: 265–273.
  • Martinez-Guanter J, Garrido-Izard M, Valero C, Slaughter D C, Perez-Ruiz M. Optical Sensing to Determine Tomato Plant Spacing for Precise Agrochemical Application: Two Scenarios. Sensors 2017; 17: 1096.
  • Gibbs J A, Pound M, Wells D M, Murchie E, French A, Pridmorei T. Three-Dimensional Reconstruction of Plant Shoots from Multiple Images using an Active Vision System, Conference: Proceedings of the IROS Workshop on Agri-Food Robotics-Hamburg 2016; 1-7.
  • Shalal N, Lowi T, McCarthy C, Hancock N. Orchard mapping and mobile robot localisation using on-board camera and laser scanner data fusion – Part B: Mapping and localisation. Computers and Electronics in Agriculture 2015; 119: 267–278.
  • Makdessi N A, Jean P A, Ecarnot M, Gorreta N, Rabatel G, Rournet P. How plant structure impacts the biochemical leaf traits assessment from in-field hyperspectral images: A simulation study based on light propagation modeling in 3D virtual wheat scenes. Field Crops Research 2017; 205: 95-105.
  • Yandun F, Reina G, Torres-Torriti M, Kantor G, Cheein F A. A Survey of Ranging and Imaging Techniques for Precision Agriculture Phenotyping. IEEE/ASME Transactions on Mechatronics 2017; 1-11.
  • Palleja T, Tresanchez M, Teixido M, Sanz R, Rosell J R, Palacin J. Sensitivity of tree volume measurement to trajectory errors from a terrestrial LIDAR scanner. Agricultural and Forest Meteorology 2010; 150: 1420–1427.
  • Massinon M, Dumont B, De Cock N, Salah S O T, Lebeau F. Study of retention variability on an early growth stage herbaceous plant using a 3D virtual spraying model. Crop Protection 2015; 78: 63-71.
  • Zhai Z, Du Y, Zhu Z, Lang J, Mao E. Three-dimensional reconstruction method of farmland scene based on rank transformation. Transactions of the Chinese Society of Agricultural Engineering 2015; 31(20): 157-164.
  • Rosell J R, Llorens J, Sanz R, Arnó J, Ribes-Dasi M, Masip J, Escolá A, Camp F, Solanelles F, Grácia F,Gil E, Val L, Planas S, Palacín J. Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agricultural and Forest Meteorology 2009; 149: 1505–1515
  • Hosoi F, Omasa K. Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable lidar imaging. ISPRS Journal of Photogrammetry and Remote Sensing 2009; 64: 151–158.
  • Godin C, Sinoquet H. Functional-structural plant modellig. New Phytologist 2005; 166: 705-708.
  • Tuernit E, Bauby H, Dubreucq B, Grandjean O, Runions J, Barthélémy J, Palauqui J C. High-Resolution Whole-Mount Imaging of Three-Dimensional Tissue Organization and Gene Expression Enables the Study of Phloem Development and Structure in Arabidopsis. The Plant Cell. 2008; 20: 1494-1503.
  • Huk Y. Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning 2006; 22: 392–404.
  • Nield J, Orlova E V, Morris E P, Gowen B, Heel M, Barber J. 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nature Structural Biology 2000; 7(1): 44-47.
  • Mayo S C, Chen F, Evans R. Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography. Journal of Structural Biology 2010; 171:182-188.
  • Derksen J, Janssen G J, Wolters-Arts M, Lichtscheidl I, Adlassnig W, Ovecka M, Doris F, Steer M. Wall architecture with high porosity is established at the tip and maintained in growing pollen tubes of Nicotiana tabacum. The Plant Journal 2011; 68: 495-506.
  • Souza N M, Topham A T, Bassel G W. Quantitative analysis of the 3D cell shape changes driving soybean germination. Journal of Experimental Botany 2017; 68 (7): 1531–1537.
  • Özsel Akipek F, Yazar T. “Growing an Architectural System”: Bir Mimari Sistem Büyütmek, Performansa Dayalı Sayısal Tasarım Araştırmaları için Prototipler. İmkansız Mekanlar/Olanaksızın Olanağı-MSTAS 2017; 162-170.
  • Ferreira L T, Silva M M A, Ulisses C, Camara T R, Willadino L. Using LED lighting in somatic embryogenesis and micropropagation of an elite sugarcane variety and its effect on redox metabolism during acclimatization. Plant Cell Tissue Organ Culture 2017; 128: 211–221.
  • Takeui B, Ansante N F, Rossi M L, Calaboni C, Hercilio P, Rodrigues V. In vitro culture of heliconia in difffferent light sources. Plant Cell Culture & Micropropagation 2016; 12(2): 39-45.
  • Shukla M R, Singh A S, Piunno K, Saxena P K, Jones A M P. Application of 3D printing to prototype and develop novel plant tissue culture systems. Plant Method 2017; 13(6): 1-10.
  • Ventola C L. Medical applications for 3D printing: Current and projected uses. Pharmacy and Therapeutics 2014; 39(10): 704-711.
  • Luo C, Wightman R, Meyerowitz E, Smukoz S K. A 3-dimensional fibre scaffold as an investigative tool for studying the morphogenesis of isolated plant cells. BMC Plant Biology 2015;15(211): 1-15.
  • [Szojka A, Lalh K, Andrews S H J, Jomha N M, Osswald M, Adesida A B. Biomimetic 3D printed scaffolds for meniscus tissue engineering. Bioprinting 2017; 8:1-7.
  • Seidel J, Ahlfeld T, Adolph M, Kümmritz S, Steingroewer J, Krujatz F, Bley T, Gelinsky M, Lode A. Green bioprinting: extrusion-based fabrication of plant cell-laden biopolymer hydrogel scaffolds. Biofabrication 2017; 9: 1-11.
  • Nezhad A S. Microfluidic platforms for plant cells studies: Lab on a Chip 2014; 14: 3262-3274 .
  • Allazetta S, Hausherr T C, Lutolf P. Microfluidic Synthesis of Cell-Type-Specific Artificial Extracellular Matrix Hydrogels. Biomacromolecules 2013; 14: 1122-1131.
  • Nezhad A S, Ghanbari M, Agudelo C G, Naghavi M, Packirisamy M, Bhat R B, Geitmann A. Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis. Biomed Microdevices 2014; 16: 23-33.
  • Junior A M A, Braido G, Saska S, Barud H S, Franchi L P, Assunçao R M N, Scarel-Caminaga R M, Capote T S O, Messaddeq Y, Ribeiro S J L. Regenerated cellulose scaffolds: Preparation, characterization and toxicological evaluation. Carbohydrate Polymers 2016; 136: 892-898.
  • Ko S W, Sariano J P E, Lee J Y, Unnithan A R, Park C H, Kim C S. 2017. Nature derived scaffolds for tissue engineering applications: Design and fabrication of a composite scaffold incorporating chitosan-g-d,l-lactic acid and cellulose nanocrystals from Lactuca sativa L. cv green leaf. International Journal of Biological Macromolecules 2017 Oct 18.
  • Gershlak J R, Hernandez S, Fontana G, Perreault L R, Hansen K J, Larson S A, Binder B Y K, Dolivo D M, Yang T, Dominko T, Rolle M W, Weathers P J, Medina-Bolivar F, Cramer C L, Murphy W L, Gaudette G R. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials 2017; 125: 13-22.
  • Fontana G, Gershlak J, Adamski M, Lee J S, Matsumoto S, Le H D, Binder B, Wirth J, Gaudette G, Murphy W L. Biofunctionalized Plants as Diverse Biomaterials for Human Cell Culture. Advanced Healthcare Mater 2017; 6 (1601225): 1-9.
  • Han L, Yang D P, Liu A. Leaf-templated synthesis of 3D hierarchical porous cobalt oxide nanostructure as direct electrochemical biosensing interface with enhanced electrocatalysis. Biosensors and Bioelectronics 2015; 63: 145–152.
  • Rebelo R, Fernandes M, Fangueiro R. Biopolymers in Medical Implants: A Brief Review. Procedia Engineering. 2017; 200: 236-243.
  • Malafaya P B, Silva G A, Reis R L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Review 2007; 59: 207-233.
  • Lam N T, Chollakup R, Smitthipong W, Nimchua T, Sukyai P. Utilizing cellulose from sugarcane bagasse mixed with poly(vinyl alcohol) for tissue engineering scaffold fabrication. Industrial Crops and Products 2017; 100: 183-197.
  • Sultan S, Siqueira G, Zimmermann T, Mathew A P. 3D printing of nano-cellulosic biomaterials for medical applications. Current Opinion in Biomedical Engineering 2017; 2: 29-34.
  • Shahriarpanah S, Nourmohammadi J, Amoabediny G. Fabrication and characterization of carboxylated starch-chitosan bioactive scaffold for bone regeneration. International Journal of Biological Macromolecules 2016; 93: 1069-1078.
  • Bassel G W, Smith R S. Quantifying morphogenesis in plants in 4D. Current Opinion in Plant Biology 2016; 29: 87–94.

Bitkilerde 3D Teknolojisi Uygulamalarına Genel Bakış: Fenomik, Robotik Sistemler ile Haritalandırma, Mimari Tasarımlar, Bitki ve Hayvan Doku Kültürü Yaklaşımları

Year 2018, Volume: 7 Issue: 2, 239 - 255, 17.08.2018
https://doi.org/10.18036/aubtdc.378468

Abstract

İki
boyutlu çalışmaların karmaşık bitkisel formlar hakkında yetersiz kalması ve
gelişen teknolojilerin daha ayrıntılı veriler toplanmasına izin vermesi,
araştırmacıları yeni alternatifler arama yoluna itmiştir. Bitki biyoteknolojisi
ile ilgili gelişmeler, son yirmi yılda mikroskobi, yapısal ve fonksiyonel bitki
modellemeleri, fenotiplendirme ve genomik çalışmaları gibi teknolojilerdeki
ilerlemelere bağlı olarak hızlı bir şekilde değişim göstermiştir. Özellikle
“fenomik” adı verilen ve fenotiplendirme ile bitkilerin incelendiği çalışmalar,
araştırıcıların ilgisini çeken son yılların popüler konularından biri durumundadır.
Günümüzde tarımsal alanda gerçekleştirilen bilimsel araştırmalar ve üretim
teknikleri, dijital ve görsel olarak daha yüksek kararlılıkta gerçekleştirilir
hale gelmiştir. Robot ve sensör sistemlerindeki hızlı gelişmeler; tarımsal araştırmalarla
bir araya gelerek tarımsal biyoteknolojide yeni ufuklar açmış, birçok
araştırmacı için mükemmel bir model olan bitki mimarisinin ve hatta bitkisel dokuların
da belirlenmesi sağlanmıştır. Üç boyutlu biyoteknoloji, tarımsal araştırmalarda
fenotiplendirme çalışmalarının yanı sıra, robotik sistemlerle algılama ve
haritalandırma alanlarında da sıklıkla kullanılmaktadır. Ayrıca bitkilerin 3D
yapılarını veren bilgisayar algoritmaları aracılığıyla mimari tasarımlar
yapılabildiği gibi, çeşitli ürün ve sanat eserleri de üretilmektedir.



Bitkisel dokuların yapı ve fonksiyonlarının
belirlenmesi ve bitki doku kültürü tekniklerinde yeni kültür sistemlerinin
geliştirilmesi için 3D baskılama teknolojisinden yararlanılması önemli bir
yaklaşım haline gelmeye başlamıştır. Son zamanlarda, hayvan doku mühendisliğindeki
mikro benzerliklerden dolayı, bitki formlarının ve bitkilerden elde edilen
çeşitli ürünlerin doku iskelesi üretiminde kullanım potansiyelleri
araştırılmaktadır. Çoğunlukla hayvan hücre kültürü tekniklerinde kullanılan mikroakışkan
sistemler, bitkisel hücrelerle ilişkili araştırmalarda da yoğun şekilde ele
alınmaktadır. Bahsedilen tüm bu teknikler ile elde edilen veriler, tarımda
zararlılarla mücadeleden, tıpta yapay organların tasarlanmasına, bilgisayar
oyunlarının programlanmasından ormancılığa kadar pek çok alanda
kullanılmaktadır. Bu makalede, bitkisel sistemlerde 3D teknolojisi ile
gerçekleştirilen çalışmalar özetlenmeye çalışılmıştır.

References

  • Brodersen C R, Rodd A B. New frontiers in the three-dimensional visualization of plant structure and function. American Journal of Botany 2015; 103 (2): 184-188.
  • Chaudhury, A., Ward, C., Talasaz, A. Ivanov, A.G., Brophy, M., Grodzinski, B., Hüner, N.P.A., Patel, R.V. and Barroni, J.L. 2017. Machine Vision System for 3D Plant Phenotyping. https://arxiv.org/abs/1705.00540
  • Wen W, Guo X, Wang Y, Zhao C, Liao W. Constructing a three-dimensional resource database of plants using situ-measured morphological data. 2016 ASABE Annual International Meeting. Orlando, Florida July 17-20, 2016. Paper Number: 162449020.
  • Pradal C, Boudon F, Nouguier C, Chopard J, Godin C. PlantGL: a Python-based geometric library for 3D plant modeling at different scales. Graphical Models 2009; 71: 1–21.
  • Peele B N. CS5643 Final Project: Modeling leaf venation patterns for use in 3D printing. Mechanical Engineering, Cornell University 2012.
  • Paulus S, Behmann J, Mahlein A K, Plümer L, Kuhlmann H. Low-Cost 3D Systems: Suitable Tools for Plant Phenotyping. Sensors 2014; 14: 3001-3018.
  • Omasa K, Hosoi F, Konishi A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. Journal of Experimental Botany 2007; 58(4): 881–898.
  • Lin Y. LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics? Computers and Electronics in Agriculture 2015;119: 61–73.
  • Bietresato M, Carabin G, Vidoni R, Gasparetta A, Mazzetto F. Evaluation of a LiDAR-based 3D-stereoscopic vision system for crop-monitoring applications. Computers and Electronics in Agriculture 2016; 124: 1–13.
  • Chaivivatrakul S, Tang L, Dailey M N, Namarmi A D. Automatic morphological trait characterization for corn plants via 3D holographic reconstruction. Computers and Electronics in Agriculture 2014; 109: 109-123.
  • Dhondt S, Wuyts N, Inzé D. Cell to whole-plant phenotyping: the best is yet to come. Trends in Plant Science 2013; 18 (8): 1360-1385.
  • An N, Welch S M, Markelz R J C, Baker R L, Palmer C M, Ta J, Maloof J N, Weinig, C. Quantifying time-series of leaf morphology using 2D and 3D photogrammetry methods for high-throughput plant phenotyping. Computers and Electronics in Agriculture 2017; 135: 222-232.
  • Chéné Y, Rousseau D, Lucidarme P, Bertheloot J, Caffier V, Morel P, Belin É, Chapeau-Blondeau F. On the use of depth camera for 3D phenotyping of entire plants. Computers and Electronics in Agriculture 2012; 82: 122–127.
  • Sodhi P, Vijayarangan S, Wettergreen D. In-field Segmentation and Identification of Plant Structures using 3D Imaging. Conference Paper, IEEE/RSJ International Conference on Intelligent Robots and Systems 24-28 September 2017, Vancouver, Canada. IEEE. pp. 5180-5187
  • Quan L, Tan P, Zeng G, Yuan L, Wang J, Kang S B. Image-based Plant Modeling. ACM Trans. on Graphics (SIGGRAPH) 2006; 25 (3): 772–778.
  • Zhang Y, Zhuang Z, Xiao Y, He Y. Rape plant NDVI 3D distribution based on structure from motion. Transactions of the Chinese Society of Agricultural Engineering 2015; 31 (17): 207-214.
  • Dhondt S, Gonzales N, Blomme J, Milde L, Daele T V, Akoleyen D V, Storme V, Coppens F, Beemster G T S, Inze D. High-resolution time-resolved imaging of in vitro Arabidopsis rosette growth. The Plant Journal 2014; 80:172-184.
  • Phattaralerphong J, Sathornkich J, Sinoquet H. A photographic gap fraction method for estimating leaf area of isolated trees: assessment with 3D digitized plants. Tree Physiology 2006; 20:1123-1136.
  • Dellen B, Scharr H, Torras C. Growth signatures of rosette plants from time-lapse video. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2015;12 (6): 1470–1478.
  • Tian T, Wu L, Henke M, Ali B, Zhou W, Buck-Sorlin G. Modeling Allometric Relationships in Leaves of Young Rapeseed (Brassica napus L.) Grown at Different Temperature Treatments. Front. Plant Sci. 2017; 8(313): 1-12.
  • Failmezger H, Jeagle B, Schrader A, Hülskamp M, Tresch A. Semi-automated 3D Leaf Reconstruction and Analysis of Trichome Patterning from Light Microscopic Images. PLoS Comput Biol. 2013; 9(4): 1-10.
  • Zheng Y, Gu S, Edelsbrunner H, Tomasi C, Benfey P. Detailed Reconstruction of 3D Plant Root Shape. 2011 IEEE International Conference on Computer Vision 2011; 11: 2026-2033.
  • Chen X, Ding Q, Blaszkiewicz Z, Sun J, Sun Q, He R, Li Y. Phenotyping for the Dynamics of feld wheat root system architecture. Scientific Reports 2017; 7 (37649): 1-11.
  • Chen X, Ding Q, Li Y, Xue J, He R. Three Dimensional Fractal Characteristics of Wheat Root System for Rice-Wheat Rotation in Southern China. Scientia Agricultura Sinica 2017; 50(3): 451-460.
  • Xu H, Maenhout P, Swanckaert J, Vandecasteele B, Sleutel S. Larger field than variety effect on belowground maize biomass and root system architecture. Day of Young Soil Scientist 2017.
  • Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X. Root system architecture: opportunities and constraints for genetic improvement of crops. TRENDS in Plant Science2007; 12.
  • Liang T, Knappett J A, Bengough A G, Ke Y X. Small-scale modelling of plant root systems using 3D printing, with applications to investigate the role of vegetation on earthquake-induced landslides. Landslides 2017; 14: 1747–1765.
  • Zhu J, Ingram P A, Benfey P N, Elich T. From lab to field, new approaches to phenotyping root system architecture. Current Opinion in Plant Biology 2011; 14: 310–317.
  • Mieszkalski L. The method of 3D reconstruction of apple shape. Part 2. Geometric 3D model of an apple using Bézier curves. Annals of Warsaw University of Life Sciences – SGGW, Agriculture No 69 (Agricultural and Forest Engineering) 2017; 69: 33-41.
  • Mieszkalski L. The method of 3D reconstruction of apple shape. Part 1. Apple shape mathematical modeling method. Annals of Warsaw University of Life Sciences – SGGW, Agriculture No 69 (Agricultural and Forest Engineering) 2017; 69: 23-32.
  • Abera M K, Verboven P, Herremans E, Defraeye T, Fanta S W, Ho Q T, Carmelist J, Nicolai B M. 3D Virtual Pome Fruit Tissue Generation Based on Cell Growth Modeling. Food Bioprocess Technology 2014; 7: 542-555.
  • Pandey V P, Singh S, Jaiswel N, Awasthi M, Pandey B, Dwivedi U N. Papaya fruit ripening: ROS metabolism, gene cloning, characterization and molecular docking of peroxidase. Journal of Molecular Catalysis B: Enzymatic 2013; 98: 98–105
  • Weiss B, Biber P. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robotics and Autonomous Systems 2011; 59: 265–273.
  • Martinez-Guanter J, Garrido-Izard M, Valero C, Slaughter D C, Perez-Ruiz M. Optical Sensing to Determine Tomato Plant Spacing for Precise Agrochemical Application: Two Scenarios. Sensors 2017; 17: 1096.
  • Gibbs J A, Pound M, Wells D M, Murchie E, French A, Pridmorei T. Three-Dimensional Reconstruction of Plant Shoots from Multiple Images using an Active Vision System, Conference: Proceedings of the IROS Workshop on Agri-Food Robotics-Hamburg 2016; 1-7.
  • Shalal N, Lowi T, McCarthy C, Hancock N. Orchard mapping and mobile robot localisation using on-board camera and laser scanner data fusion – Part B: Mapping and localisation. Computers and Electronics in Agriculture 2015; 119: 267–278.
  • Makdessi N A, Jean P A, Ecarnot M, Gorreta N, Rabatel G, Rournet P. How plant structure impacts the biochemical leaf traits assessment from in-field hyperspectral images: A simulation study based on light propagation modeling in 3D virtual wheat scenes. Field Crops Research 2017; 205: 95-105.
  • Yandun F, Reina G, Torres-Torriti M, Kantor G, Cheein F A. A Survey of Ranging and Imaging Techniques for Precision Agriculture Phenotyping. IEEE/ASME Transactions on Mechatronics 2017; 1-11.
  • Palleja T, Tresanchez M, Teixido M, Sanz R, Rosell J R, Palacin J. Sensitivity of tree volume measurement to trajectory errors from a terrestrial LIDAR scanner. Agricultural and Forest Meteorology 2010; 150: 1420–1427.
  • Massinon M, Dumont B, De Cock N, Salah S O T, Lebeau F. Study of retention variability on an early growth stage herbaceous plant using a 3D virtual spraying model. Crop Protection 2015; 78: 63-71.
  • Zhai Z, Du Y, Zhu Z, Lang J, Mao E. Three-dimensional reconstruction method of farmland scene based on rank transformation. Transactions of the Chinese Society of Agricultural Engineering 2015; 31(20): 157-164.
  • Rosell J R, Llorens J, Sanz R, Arnó J, Ribes-Dasi M, Masip J, Escolá A, Camp F, Solanelles F, Grácia F,Gil E, Val L, Planas S, Palacín J. Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agricultural and Forest Meteorology 2009; 149: 1505–1515
  • Hosoi F, Omasa K. Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable lidar imaging. ISPRS Journal of Photogrammetry and Remote Sensing 2009; 64: 151–158.
  • Godin C, Sinoquet H. Functional-structural plant modellig. New Phytologist 2005; 166: 705-708.
  • Tuernit E, Bauby H, Dubreucq B, Grandjean O, Runions J, Barthélémy J, Palauqui J C. High-Resolution Whole-Mount Imaging of Three-Dimensional Tissue Organization and Gene Expression Enables the Study of Phloem Development and Structure in Arabidopsis. The Plant Cell. 2008; 20: 1494-1503.
  • Huk Y. Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning 2006; 22: 392–404.
  • Nield J, Orlova E V, Morris E P, Gowen B, Heel M, Barber J. 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nature Structural Biology 2000; 7(1): 44-47.
  • Mayo S C, Chen F, Evans R. Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography. Journal of Structural Biology 2010; 171:182-188.
  • Derksen J, Janssen G J, Wolters-Arts M, Lichtscheidl I, Adlassnig W, Ovecka M, Doris F, Steer M. Wall architecture with high porosity is established at the tip and maintained in growing pollen tubes of Nicotiana tabacum. The Plant Journal 2011; 68: 495-506.
  • Souza N M, Topham A T, Bassel G W. Quantitative analysis of the 3D cell shape changes driving soybean germination. Journal of Experimental Botany 2017; 68 (7): 1531–1537.
  • Özsel Akipek F, Yazar T. “Growing an Architectural System”: Bir Mimari Sistem Büyütmek, Performansa Dayalı Sayısal Tasarım Araştırmaları için Prototipler. İmkansız Mekanlar/Olanaksızın Olanağı-MSTAS 2017; 162-170.
  • Ferreira L T, Silva M M A, Ulisses C, Camara T R, Willadino L. Using LED lighting in somatic embryogenesis and micropropagation of an elite sugarcane variety and its effect on redox metabolism during acclimatization. Plant Cell Tissue Organ Culture 2017; 128: 211–221.
  • Takeui B, Ansante N F, Rossi M L, Calaboni C, Hercilio P, Rodrigues V. In vitro culture of heliconia in difffferent light sources. Plant Cell Culture & Micropropagation 2016; 12(2): 39-45.
  • Shukla M R, Singh A S, Piunno K, Saxena P K, Jones A M P. Application of 3D printing to prototype and develop novel plant tissue culture systems. Plant Method 2017; 13(6): 1-10.
  • Ventola C L. Medical applications for 3D printing: Current and projected uses. Pharmacy and Therapeutics 2014; 39(10): 704-711.
  • Luo C, Wightman R, Meyerowitz E, Smukoz S K. A 3-dimensional fibre scaffold as an investigative tool for studying the morphogenesis of isolated plant cells. BMC Plant Biology 2015;15(211): 1-15.
  • [Szojka A, Lalh K, Andrews S H J, Jomha N M, Osswald M, Adesida A B. Biomimetic 3D printed scaffolds for meniscus tissue engineering. Bioprinting 2017; 8:1-7.
  • Seidel J, Ahlfeld T, Adolph M, Kümmritz S, Steingroewer J, Krujatz F, Bley T, Gelinsky M, Lode A. Green bioprinting: extrusion-based fabrication of plant cell-laden biopolymer hydrogel scaffolds. Biofabrication 2017; 9: 1-11.
  • Nezhad A S. Microfluidic platforms for plant cells studies: Lab on a Chip 2014; 14: 3262-3274 .
  • Allazetta S, Hausherr T C, Lutolf P. Microfluidic Synthesis of Cell-Type-Specific Artificial Extracellular Matrix Hydrogels. Biomacromolecules 2013; 14: 1122-1131.
  • Nezhad A S, Ghanbari M, Agudelo C G, Naghavi M, Packirisamy M, Bhat R B, Geitmann A. Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis. Biomed Microdevices 2014; 16: 23-33.
  • Junior A M A, Braido G, Saska S, Barud H S, Franchi L P, Assunçao R M N, Scarel-Caminaga R M, Capote T S O, Messaddeq Y, Ribeiro S J L. Regenerated cellulose scaffolds: Preparation, characterization and toxicological evaluation. Carbohydrate Polymers 2016; 136: 892-898.
  • Ko S W, Sariano J P E, Lee J Y, Unnithan A R, Park C H, Kim C S. 2017. Nature derived scaffolds for tissue engineering applications: Design and fabrication of a composite scaffold incorporating chitosan-g-d,l-lactic acid and cellulose nanocrystals from Lactuca sativa L. cv green leaf. International Journal of Biological Macromolecules 2017 Oct 18.
  • Gershlak J R, Hernandez S, Fontana G, Perreault L R, Hansen K J, Larson S A, Binder B Y K, Dolivo D M, Yang T, Dominko T, Rolle M W, Weathers P J, Medina-Bolivar F, Cramer C L, Murphy W L, Gaudette G R. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials 2017; 125: 13-22.
  • Fontana G, Gershlak J, Adamski M, Lee J S, Matsumoto S, Le H D, Binder B, Wirth J, Gaudette G, Murphy W L. Biofunctionalized Plants as Diverse Biomaterials for Human Cell Culture. Advanced Healthcare Mater 2017; 6 (1601225): 1-9.
  • Han L, Yang D P, Liu A. Leaf-templated synthesis of 3D hierarchical porous cobalt oxide nanostructure as direct electrochemical biosensing interface with enhanced electrocatalysis. Biosensors and Bioelectronics 2015; 63: 145–152.
  • Rebelo R, Fernandes M, Fangueiro R. Biopolymers in Medical Implants: A Brief Review. Procedia Engineering. 2017; 200: 236-243.
  • Malafaya P B, Silva G A, Reis R L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Review 2007; 59: 207-233.
  • Lam N T, Chollakup R, Smitthipong W, Nimchua T, Sukyai P. Utilizing cellulose from sugarcane bagasse mixed with poly(vinyl alcohol) for tissue engineering scaffold fabrication. Industrial Crops and Products 2017; 100: 183-197.
  • Sultan S, Siqueira G, Zimmermann T, Mathew A P. 3D printing of nano-cellulosic biomaterials for medical applications. Current Opinion in Biomedical Engineering 2017; 2: 29-34.
  • Shahriarpanah S, Nourmohammadi J, Amoabediny G. Fabrication and characterization of carboxylated starch-chitosan bioactive scaffold for bone regeneration. International Journal of Biological Macromolecules 2016; 93: 1069-1078.
  • Bassel G W, Smith R S. Quantifying morphogenesis in plants in 4D. Current Opinion in Plant Biology 2016; 29: 87–94.
There are 72 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

Begüm Güler 0000-0002-9970-2111

Pelin Sağlam Metiner This is me

Sultan Gülçe İz This is me

Aynur Gürel

Publication Date August 17, 2018
Published in Issue Year 2018 Volume: 7 Issue: 2

Cite

APA Güler, B., Sağlam Metiner, P., Gülçe İz, S., Gürel, A. (2018). Bitkilerde 3D Teknolojisi Uygulamalarına Genel Bakış: Fenomik, Robotik Sistemler ile Haritalandırma, Mimari Tasarımlar, Bitki ve Hayvan Doku Kültürü Yaklaşımları. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, 7(2), 239-255. https://doi.org/10.18036/aubtdc.378468
AMA Güler B, Sağlam Metiner P, Gülçe İz S, Gürel A. Bitkilerde 3D Teknolojisi Uygulamalarına Genel Bakış: Fenomik, Robotik Sistemler ile Haritalandırma, Mimari Tasarımlar, Bitki ve Hayvan Doku Kültürü Yaklaşımları. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. August 2018;7(2):239-255. doi:10.18036/aubtdc.378468
Chicago Güler, Begüm, Pelin Sağlam Metiner, Sultan Gülçe İz, and Aynur Gürel. “Bitkilerde 3D Teknolojisi Uygulamalarına Genel Bakış: Fenomik, Robotik Sistemler Ile Haritalandırma, Mimari Tasarımlar, Bitki Ve Hayvan Doku Kültürü Yaklaşımları”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 7, no. 2 (August 2018): 239-55. https://doi.org/10.18036/aubtdc.378468.
EndNote Güler B, Sağlam Metiner P, Gülçe İz S, Gürel A (August 1, 2018) Bitkilerde 3D Teknolojisi Uygulamalarına Genel Bakış: Fenomik, Robotik Sistemler ile Haritalandırma, Mimari Tasarımlar, Bitki ve Hayvan Doku Kültürü Yaklaşımları. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 7 2 239–255.
IEEE B. Güler, P. Sağlam Metiner, S. Gülçe İz, and A. Gürel, “Bitkilerde 3D Teknolojisi Uygulamalarına Genel Bakış: Fenomik, Robotik Sistemler ile Haritalandırma, Mimari Tasarımlar, Bitki ve Hayvan Doku Kültürü Yaklaşımları”, Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, vol. 7, no. 2, pp. 239–255, 2018, doi: 10.18036/aubtdc.378468.
ISNAD Güler, Begüm et al. “Bitkilerde 3D Teknolojisi Uygulamalarına Genel Bakış: Fenomik, Robotik Sistemler Ile Haritalandırma, Mimari Tasarımlar, Bitki Ve Hayvan Doku Kültürü Yaklaşımları”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 7/2 (August 2018), 239-255. https://doi.org/10.18036/aubtdc.378468.
JAMA Güler B, Sağlam Metiner P, Gülçe İz S, Gürel A. Bitkilerde 3D Teknolojisi Uygulamalarına Genel Bakış: Fenomik, Robotik Sistemler ile Haritalandırma, Mimari Tasarımlar, Bitki ve Hayvan Doku Kültürü Yaklaşımları. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2018;7:239–255.
MLA Güler, Begüm et al. “Bitkilerde 3D Teknolojisi Uygulamalarına Genel Bakış: Fenomik, Robotik Sistemler Ile Haritalandırma, Mimari Tasarımlar, Bitki Ve Hayvan Doku Kültürü Yaklaşımları”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, vol. 7, no. 2, 2018, pp. 239-55, doi:10.18036/aubtdc.378468.
Vancouver Güler B, Sağlam Metiner P, Gülçe İz S, Gürel A. Bitkilerde 3D Teknolojisi Uygulamalarına Genel Bakış: Fenomik, Robotik Sistemler ile Haritalandırma, Mimari Tasarımlar, Bitki ve Hayvan Doku Kültürü Yaklaşımları. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2018;7(2):239-55.