Research Article
BibTex RIS Cite

Analysis of Shoreline Changes in Kızılırmak Delta Using EPR and LRR Methods for the Period 1984–2022, and Prediction for the Year 2030

Year 2023, Volume: 21 Issue: 2, 306 - 339, 30.10.2023
https://doi.org/10.33688/aucbd.1310132

Abstract

Determining shoreline changes, investigating the reasons for these changes, and making predictions for the feature are of great importance for coastal management. The aim of this study is to analyze shoreline changes in an 8 km-long region of the Kızılırmak Delta during the period 1984–2022 and predict the shoreline for the year 2030. The shorelines were determined using Landsat-5 TM/Landsat-8 OLI/Landsat-9 OLI-2 satellite images of 1984, 1990, 1996, 2002, 2008, 2015 and 2022. Annual shoreline change rates were calculated using the EPR and LRR methods. For the period 1984–2022, EPR revealed an average erosion rate of -7.0 m/year, with a maximum erosion rate of -16.2 m/year. LRR showed an average erosion rate of -7.5 m/year, with a maximum erosion rate of -19.6 m/year. The total area lost due to erosion was 201.40 hectares, and 57% of the 8 km coast according to EPR and 50% according to LRR showed high degree of erosion. The results revealed that the coastal protection structures could not completely prevent the erosion. Without necessary precautions, it is predicted that an additional 51.48 hectares of area may be lost due to erosion by 2030, potentially reaching depths of -270.8 m.

References

  • Aladwani, N. S. (2022). Shoreline change rate dynamics analysis and prediction of future positions using satellite imagery for the southern coast of Kuwait: A case study. Oceanologia, 64 (3), 417–432. doi: 10.1016/j.oceano.2022.02.002
  • Ankrah, J., Monteiro, A., Madureira, H. (2022). Bibliometric analysis of data sources and tools for shoreline change analysis and detection. Sustainability, 14 (9), 4895. doi: 10.3390/su14094895
  • Anthony, E. J. (2015). Deltas. In G. Masselink, R. Gehrels (Eds.), Coastal Environments and Global Change, 299–337. doi: 10.1002/9781119117261.ch13
  • Ataol, M., Kale, M. M., Tekkanat, İ. S. (2019). Assessment of the changes in shoreline using digital shoreline analysis system: a case study of Kızılırmak Delta in northern Turkey from 1951 to 2017. Environmental Earth Sciences, 78, 1–9. doi: 10.1007/s12665-019-8591-7
  • Ataol, M., Köle, M. (2016). Kızılırmak Deltası’nda 2000–2015 yılları arasında gözlenen kıyı erozyonu. GEOMED 2016 4th International Geography Symposium, Antalya, Turkey, 23–26 May 2016.
  • Athearn, W. D., Ronne, F. C. (1963). Shoreline changes at Cape Hatteras: An aerial photographic study of a 17-year period. Naval Research Reviews, 6, 17–24.
  • Atkinson, P. M. (2001). Super-resolution target mapping from softclassified remotely sensed imagery. Proceeding of the 6th International Conference on Geocomputation, University of Queensland, Brisbane, Australia, 24–26 September 2001.
  • Awad, M., El-Sayed, H. M. (2021). The analysis of shoreline change dynamics and future predictions using automated spatial techniques: Case of El-Omayed on the Mediterranean coast of Egypt. Ocean & Coastal Management, 205, 105568. doi: 10.1016/j.ocecoaman.2021.105568
  • Baig, M. R. I., Ahmad, I. A., Shahfahad, Tayyab, M., Rahman, A. (2020). Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS). Annals of GIS, 26 (4), 361–376. doi: 10.1080/19475683.2020.1815839
  • Baral, R., Pradhan, S., Samal, R. N., Mishra, S. K. (2018). Shoreline change analysis at Chilika Lagoon Coast, India using digital shoreline analysis system. Journal of the Indian Society of Remote Sensing, 46 (10), 1637–1644. doi: 10.1007/s12524-018-0818-7
  • Barrett, J. P. (1974). The coefficient of determination—some limitations. The American Statistician, 28(1), 19–20. doi: 10.1080/00031305.1974.10479056
  • Basheer Ahammed, K., Pandey, A. C. (2022). Assessment and prediction of shoreline change using multi-temporal satellite data and geostatistics: A case study on the eastern coast of India. Journal of Water and Climate Change, 13 (3), 1477–1493. doi: 10.2166/wcc.2022.270
  • Bheeroo, R. A., Chandrasekar, N., Kaliraj, S., Magesh, N. (2016). Shoreline change rate and erosion risk assessment along the Trou Aux Biches–Mont Choisy beach on the northwest coast of Mauritius using GIS-DSAS technique. Environmental Earth Sciences, 75, 1–12. doi: 10.1007/s12665-016-5311-4
  • Boak, E. H., Turner, I. L. (2005). Shoreline definition and detection: a review. Journal of Coastal Research, 21 (4), 688–703. doi: 10.2112/03-0071.1
  • Burningham, H., Fernandez-Nunez, M. (2020). Shoreline change analysis. In Sandy Beach Morphodynamics, 439–460. Elsevier.
  • Can, Ö., Taş, B. (2012). Ramsar alanı içinde yer alan Cernek Gölü ve sulak alanının (Kızılırmak Deltası, Samsun) ekolojik ve sosyo-ekonomik önemi. TÜBAV Bilim Dergisi, 5 (2), 1–11.
  • Chenthamil Selvan, S., Kankara, R., Markose, V. J., Rajan, B., Prabhu, K. (2016). Shoreline change and impacts of coastal protection structures on Puducherry, SE coast of India. Natural Hazards, 83, 293–308. doi: 10.1007/s11069-016-2332-y
  • Christmann, E. P., Badgett, J. L. (2009). Interpreting assessment data: Statistical techniques you can use. NSTA Press.
  • Das, S. K., Sajan, B., Ojha, C., Soren, S. (2021). Shoreline change behavior study of Jambudwip island of Indian Sundarban using DSAS model. The Egyptian Journal of Remote Sensing and Space Science, 24 (3), 961–970. doi: 10.1016/j.ejrs.2021.09.004
  • Deepika, B., Avinash, K., Jayappa, K. (2014). Shoreline change rate estimation and its forecast: remote sensing, geographical information system and statistics-based approach. International Journal of Environmental Science and Technology, 11, 395–416. doi:10.1007/s13762-013-0196-1
  • Dereli, M. A., Tercan, E. (2020). Assessment of shoreline changes using historical satellite images and geospatial analysis along the Lake Salda in Turkey. Earth Science Informatics, 13 (3), 709–718. doi: 10.1007/s12145-020-00460-x
  • Dey, M., Jena, B. (2021). A shoreline change detection (2012–2021) and forecasting using digital shoreline analysis system (DSAS) tool: a case study of Dahej Coast, Gulf of Khambhat, Gujarat, India. Indonesian Journal of Geography, 53 (2), 295–309. doi: 10.22146/ijg.56297
  • Dolan, R., Fenster, M. S., Holme, S. J. (1991). Temporal analysis of shoreline recession and accretion. Journal of Coastal Research, 7 (3), 723–744.
  • Dutta, D., Kumar, T., Jayaram, C., Akram, W. (2022). Shoreline change analysis of Hooghly Estuary using multi-temporal Landsat data and Digital Shoreline Analysis System. In Geographic Information Systems and Applications in Coastal Studies. IntechOpen. doi: 10.5772/intechopen.103030
  • Elfadaly, A., Abutaleb, K., Naguib, D. M., Lasaponara, R. (2022). Detecting the environmental risk on the archaeological sites using satellite imagery in Basilicata Region, Italy. The Egyptian Journal of Remote Sensing and Space Science, 25 (1), 181–193. doi: 10.1016/j.ejrs.2022.01.007
  • Esmail, M., Mahmod, W. E., Fath, H. (2019). Assessment and prediction of shoreline change using multi-temporal satellite images and statistics: Case study of Damietta coast, Egypt. Applied Ocean Research, 82, 274–282. doi: 10.1016/j.apor.2018.11.009
  • Fenster, M. S., Dolan, R., Elder, J. F. (1993). A new method for predicting shoreline positions from historical data. Journal of Coastal Research, 9 (1), 147–171. https://www.jstor.org/stable/4298075 adresinden alınmıştır.
  • Guerrera, F., Martín-Martín, M., Tramontana, M., Nimon, B., Essotina Kpémoua, K. (2021). Shoreline changes and coastal erosion: The case study of the coast of Togo (Bight of Benin, West Africa Margin). Geosciences, 11 (2), 40. doi: 10.3390/geosciences11020040
  • Gulliver, F. P. (1899). Shoreline topography. In Proceedings of the American Academy of Arts and Sciences, 34 (8), 151–258.
  • Hay, B. J. (1994). Sediment and water discharge rates of Turkish Black Sea rivers before and after hydropower dam construction. Environmental Geology, 23 (4), 276–283. doi: 10.1007/BF00766743
  • Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., Farris, A. S. (2018). Digital Shoreline Analysis System (DSAS) version 5.0 user guide: U.S. Geological Survey Open-File Report 2018–1179.
  • Islam, M. S., Crawford, T. W. (2022). Assessment of spatio-temporal empirical forecasting performance of future shoreline positions. Remote Sensing, 14 (24), 6364. doi: 10.3390/rs14246364
  • Kokpinar, M., Guler, I., Darama, Y. (2000). Bafra Ovası Kızılırmak-Karadeniz birlesimindeki kıyı erozyonunun incelenmesi. III. Ulusal Kıyı Muhendisligi Sempozyumu, 507–524.
  • Köle, M. M., Ataol, M. (2016). Yeşilırmak Deltası’nda 2000–2016 yılları arasında gözlenen kıyı erozyonu. GEOMED 2016 4th International Geography Symposium, Antalya, Turkey, 23–26 May 2016.
  • Kuleli, T., Guneroglu, A., Karsli, F., Dihkan, M. (2011). Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Engineering, 38 (10), 1141–1149. doi: 10.1016/j.oceaneng.2011.05.006
  • Kumar, A., Narayana, A., Jayappa, K. (2010). Shoreline changes and morphology of spits along southern Karnataka, westcoast of India: A remote sensing and statistics-based approach. Geomorphology, 120 (3–4), 133–152. doi: 10.1016/j.geomorph.2010.02.023
  • Li, R., Liu, J.-K., Felus, Y. (2001). Spatial modeling and analysis for shoreline change detection and coastal erosion monitoring. Marine Geodesy, 24 (1), 1–12. doi: 10.1080/01490410121502
  • Liu, Q., Trinder, J. C. (2018). Sub-pixel technique for time series analysis of shoreline changes based on multispectral satellite imagery. In M. Marghany (Ed.), Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications, Tsunami Disasters, and Infrastructure. IntechOpen. doi: 10.5772/intechopen.81789
  • Mahapatra, M., Ratheesh, R., Rajawat, A. (2014). Shoreline change analysis along the coast of South Gujarat, India, using digital shoreline analysis system. Journal of the Indian Society of Remote Sensing, 42, 869–876. doi: 10.1007/s12524-013-0334-8
  • Maiti, S., Bhattacharya, A. K. (2009). Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Marine Geology, 257 (1–4), 11–23. doi: 10.1016/j.margeo.2008.10.006
  • Mukhopadhyay, A., Mukherjee, S., Mukherjee, S., Ghosh, S., Hazra, S., Mitra, D. (2012). Automatic shoreline detection and future prediction: A case study on Puri Coast, Bay of Bengal, India. European Journal of Remote Sensing, 45 (1), 201–213. doi: 10.5721/EuJRS20124519
  • Murray, J., Adam, E., Woodborne, S., Miller, D., Xulu, S., Evans, M. (2023). Monitoring shoreline changes along the southwestern coast of South Africa from 1937 to 2020 using varied remote sensing data and approaches. Remote Sensing, 15 (2), 317. doi: 10.3390/rs15020317
  • Nandi, S., Ghosh, M., Kundu, A., Dutta, D., Baksi, M. (2016). Shoreline shifting and its prediction using remote sensing and GIS techniques: a case study of Sagar Island, West Bengal (India). Journal of Coastal Conservation, 20, 61–80. doi: 10.1007/s11852-015-0418-4
  • Nazeer, M., Waqas, M., Shahzad, M. I., Zia, I., Wu, W. (2020). Coastline vulnerability assessment through landsat and cubesats in a coastal mega city. Remote Sensing, 12 (5), 749. doi: 10.3390/rs12050749
  • Nikolakopoulos, K., Kyriou, A., Koukouvelas, I., Zygouri, V., Apostolopoulos, D. (2019). Combination of aerial, satellite, and UAV photogrammetry for mapping the diachronic coastline evolution: the case of Lefkada Island. ISPRS International Journal of Geo-Information, 8 (11), 489. doi: 10.3390/ijgi8110489
  • Oyedotun, T. D. T. (2014). Shoreline geometry: DSAS as a tool for historical trend analysis. In Geomorphological Techniques, 3,1–12.
  • Ozturk, D., Beyazit, I., Kilic, F. (2015). Spatiotemporal analysis of shoreline changes of the Kizilirmak Delta. Journal of Coastal Research, 31 (6), 1389–1402. doi: 10.2112/JCOASTRES-D-14-00159.1
  • Ozturk, D., Sesli, F. A. (2015). Shoreline change analysis of the Kizilirmak Lagoon Series. Ocean & Coastal Management, 118, 290–308. doi: 10.1016/j.ocecoaman.2015.03.009
  • Özdemir, S. (2010). Kızılırmak Deltasında aktüel kıyı çizgisi değişiklikleri ve sonuçları [Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi, Sosyal Bilimler Enstitüsü]. https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=veR1mHu9yoWjwcVUjCEoPEIzvN6DuyGMCUiNQL-5wi4RbdEcVoMji9yu_jX6kg4k adresinden alınmıştır.
  • Profillidis, V., Botzoris, G. (2019). Statistical methods for transport demand modeling. In Modeling of Transport Demand (163–224). Elsevier. doi: 10.1016/B978-0-12-811513-8.00005-4
  • Ratner, B. (2009). The correlation coefficient: Its values range between+ 1/− 1, or do they?. Journal of Targeting, Measurement and Analysis for Marketing, 17 (2), 139–142. doi: 10.1057/jt.2009.5
  • Roy, S., Mahapatra, M., Chakraborty, A. (2018). Shoreline change detection along the coast of Odisha, India using digital shoreline analysis system. Spatial Information Research, 26, 563–571. doi: 10.1007/s41324-018-0199-6
  • Sertel, E., Findik, N., Kaya, S., Seker, D. Z., Samsunlu, A. (2008). Assessment of landscape changes in the Kizilirmak Delta, Turkey, using remotely sensed data and GIS. Environmental Engineering Science, 25 (3), 353–362. doi: 10.1089/ees.2006.0149
  • Sirat, A., Sezer, İ., Akay, H. (2012). Kızılırmak Deltası’nda organik çeltik tarımı. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 2 (2), 76–92. https://dergipark.org.tr/tr/pub/gumusfenbil/issue/7481/98615 adresinden alınmıştır.
  • Song, Y., Shen, Y., Xie, R., Li, J. (2021). A DSAS-based study of central shoreline change in Jiangsu over 45 years. Anthropocene Coasts, 4 (1), 115–128. doi: 10.1139/anc-2020-0001.
  • Tabiat Varlıklarını Koruma Genel Müdürlüğü (2019). Samsun Kızılırmak Deltası Doğal Sit Alanları Sulak Alan ve Kuş Cenneti: 2019–2023 Yönetim Planı.
  • Tanner, W. F. (1978). Standards for measuring shoreline change. Department of Geology, Florida State University, Tallahassee, FL, USA.
  • Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., Ergul, A. (2009). The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change: Geological Survey Open-File Report 2008–1278.
  • Turoğlu, H. (2010). Kızılırmak Deltası ve yakın çevresinin jeomorfolojik özellikleri ve insan yaşamındaki etkileri. Anadolu Araştırmaları, 19 (1), 99–111. https://dergipark.org.tr/tr/pub/iuanadolu/issue/1162/13625 adresinden alınmıştır.
  • USGS (2022). Landsat Collection 2 Level-2 Science Products. https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products adresinden alınmıştır.
  • USGS (2023). Earth Explorer. https://earthexplorer.usgs.gov/ adresinden alınmıştır.
  • Uzun, A. (2005). Samsun İli kıyılarında antropojenik değişmeler. TUQUA Türkiye Kuvaterner Sempozyumu V, İstanbul Teknik Universitesi, Avrasya Yerbilimleri Enstitüsü, İsntanbul, 02–05 Haziran 2005.
  • Warnasuriya, T. W. S., Gunaalan, K., Gunasekara, S. S. (2018). Google earth: A new resource for shoreline change estimation—Case study from Jaffna Peninsula, Sri Lanka. Marine Geodesy, 41 (6), 546–580. doi: 10.1080/01490419.2018.1509160
  • Weerasingha, W. A. D. B., Ratnayake, A. S. (2022). Coastal landform changes on the east coast of Sri Lanka using remote sensing and geographic information system (GIS) techniques. Remote Sensing Applications: Society and Environment, 26, 100763. doi: 10.1016/j.rsase.2022.100763
  • Wicaksono, A., Wicaksono, P., Khakhim, N., Farda, N. M., Marfai, M. A. (2019). Semi-automatic shoreline extraction using water index transformation on Landsat 8 OLI imagery in Jepara Regency. Sixth International Symposium on LAPAN-IPB Satellite.
  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of remote Sensing, 27 (14), 3025–3033. doi: 10.1080/01431160600589179
  • Xu, J. (2020). Developments in management science in engineering 2018: perspectives from scientific journals. Cambridge Scholars Publishing.
  • Yılmaz, C. (2005). Kızılırmak Deltasında meydana gelen erozyonun coğrafi analizi. Türkiye Kuvaterner Sempozyumu, 2–5 Haziran 2005, İTÜ Avrasya Yer bilimleri Enstitüsü.
  • Yüksek, Ö. (2008). Samsun’un batı kıyılarındaki erozyonların incelenmesi. Samsun Kent Sempozyumu Bildiriler Kitabı. TMMOB Samsun İl Koordinasyon Kurulu, Samsun.
  • Zagórski, P., Jarosz, K., Superson, J. (2020). Integrated assessment of shoreline change along the Calypsostranda (Svalbard) from remote sensing, field survey and GIS. Marine Geodesy, 43 (5), 433–471. doi: 10.1080/01490419.2020.1715516
  • Zeybek, H. İ., Bağcı, H. R., Bahadır, M. (2018). Kızılırmak Deltasında (Samsun) kıyı çizgisi değişimlerinin Bruun Kuralına göre değerlendirilmesi. Uluslararası Sosyal Araştırmalar Dergisi, 11 (58), 308–317.
  • Zeybek, H. İ., Uzun, A., Yılmaz, C., Özdemir, S. (2011). Kızılırmak Deltası’nda kıyı çizgisi değisikliklerinin sonuçları. Samsun Sempozyumu Samsun.

Kızılırmak Deltası Kıyı Çizgisinin EPR ve LRR Yöntemleriyle 1984–2022 Periyodunda Değişim Analizi ve 2030 Yılı Tahmini

Year 2023, Volume: 21 Issue: 2, 306 - 339, 30.10.2023
https://doi.org/10.33688/aucbd.1310132

Abstract

Kıyı çizgisindeki değişimlerin belirlenmesi, değişimlerin nedenlerinin araştırılması ve gelecek tarihlere yönelik tahminler, kıyı yönetimi açısından büyük bir önem taşımaktadır. Bu çalışmanın amacı Kızılırmak Deltasında 8 km uzunluğundaki bölgede 1984–2022 periyodunda gerçekleşen kıyı çizgisi değişimlerinin analizi ve 2030 yılı için kıyı çizgisinin konumunun tahmin edilmesidir. Çalışmada 1984, 1990, 1996, 2002, 2008, 2015 ve 2022 yıllarına ait Landsat-5 TM/Landsat-8 OLI/Landsat-9 OLI-2 uydu görüntüleri kullanılarak kıyı çizgileri belirlenmiş, EPR ve LRR yöntemleriyle yıllık kıyı çizgisi değişim oranları hesaplanmıştır. 1984–2022 periyodunda EPR yöntemiyle ortalama -7,0 m/yıl ve maksimum -16,2 m/yıl, LRR yöntemiyle ortalama -7,5 m/yıl ve maksimum -19,6 m/yıl erozyon hızı belirlenmiştir. Erozyonla kaybedilen alan 201,40 ha olup, 8 km kıyının EPR yöntemine göre % 57’si, LRR yöntemine göre % 50’si yüksek erozyon derecesi taşımaktadır. Çalışmanın sonuçları kıyı koruma yapılarının erozyonu tam olarak engelleyemediğini göstermiştir. Gerekli önlemlerin alınmaması durumunda 2030 yılına kadar -270,8 m’yi bulabilecek erozyon nedeniyle 51,48 ha alanın kaybolacağı öngörülmektedir.

References

  • Aladwani, N. S. (2022). Shoreline change rate dynamics analysis and prediction of future positions using satellite imagery for the southern coast of Kuwait: A case study. Oceanologia, 64 (3), 417–432. doi: 10.1016/j.oceano.2022.02.002
  • Ankrah, J., Monteiro, A., Madureira, H. (2022). Bibliometric analysis of data sources and tools for shoreline change analysis and detection. Sustainability, 14 (9), 4895. doi: 10.3390/su14094895
  • Anthony, E. J. (2015). Deltas. In G. Masselink, R. Gehrels (Eds.), Coastal Environments and Global Change, 299–337. doi: 10.1002/9781119117261.ch13
  • Ataol, M., Kale, M. M., Tekkanat, İ. S. (2019). Assessment of the changes in shoreline using digital shoreline analysis system: a case study of Kızılırmak Delta in northern Turkey from 1951 to 2017. Environmental Earth Sciences, 78, 1–9. doi: 10.1007/s12665-019-8591-7
  • Ataol, M., Köle, M. (2016). Kızılırmak Deltası’nda 2000–2015 yılları arasında gözlenen kıyı erozyonu. GEOMED 2016 4th International Geography Symposium, Antalya, Turkey, 23–26 May 2016.
  • Athearn, W. D., Ronne, F. C. (1963). Shoreline changes at Cape Hatteras: An aerial photographic study of a 17-year period. Naval Research Reviews, 6, 17–24.
  • Atkinson, P. M. (2001). Super-resolution target mapping from softclassified remotely sensed imagery. Proceeding of the 6th International Conference on Geocomputation, University of Queensland, Brisbane, Australia, 24–26 September 2001.
  • Awad, M., El-Sayed, H. M. (2021). The analysis of shoreline change dynamics and future predictions using automated spatial techniques: Case of El-Omayed on the Mediterranean coast of Egypt. Ocean & Coastal Management, 205, 105568. doi: 10.1016/j.ocecoaman.2021.105568
  • Baig, M. R. I., Ahmad, I. A., Shahfahad, Tayyab, M., Rahman, A. (2020). Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS). Annals of GIS, 26 (4), 361–376. doi: 10.1080/19475683.2020.1815839
  • Baral, R., Pradhan, S., Samal, R. N., Mishra, S. K. (2018). Shoreline change analysis at Chilika Lagoon Coast, India using digital shoreline analysis system. Journal of the Indian Society of Remote Sensing, 46 (10), 1637–1644. doi: 10.1007/s12524-018-0818-7
  • Barrett, J. P. (1974). The coefficient of determination—some limitations. The American Statistician, 28(1), 19–20. doi: 10.1080/00031305.1974.10479056
  • Basheer Ahammed, K., Pandey, A. C. (2022). Assessment and prediction of shoreline change using multi-temporal satellite data and geostatistics: A case study on the eastern coast of India. Journal of Water and Climate Change, 13 (3), 1477–1493. doi: 10.2166/wcc.2022.270
  • Bheeroo, R. A., Chandrasekar, N., Kaliraj, S., Magesh, N. (2016). Shoreline change rate and erosion risk assessment along the Trou Aux Biches–Mont Choisy beach on the northwest coast of Mauritius using GIS-DSAS technique. Environmental Earth Sciences, 75, 1–12. doi: 10.1007/s12665-016-5311-4
  • Boak, E. H., Turner, I. L. (2005). Shoreline definition and detection: a review. Journal of Coastal Research, 21 (4), 688–703. doi: 10.2112/03-0071.1
  • Burningham, H., Fernandez-Nunez, M. (2020). Shoreline change analysis. In Sandy Beach Morphodynamics, 439–460. Elsevier.
  • Can, Ö., Taş, B. (2012). Ramsar alanı içinde yer alan Cernek Gölü ve sulak alanının (Kızılırmak Deltası, Samsun) ekolojik ve sosyo-ekonomik önemi. TÜBAV Bilim Dergisi, 5 (2), 1–11.
  • Chenthamil Selvan, S., Kankara, R., Markose, V. J., Rajan, B., Prabhu, K. (2016). Shoreline change and impacts of coastal protection structures on Puducherry, SE coast of India. Natural Hazards, 83, 293–308. doi: 10.1007/s11069-016-2332-y
  • Christmann, E. P., Badgett, J. L. (2009). Interpreting assessment data: Statistical techniques you can use. NSTA Press.
  • Das, S. K., Sajan, B., Ojha, C., Soren, S. (2021). Shoreline change behavior study of Jambudwip island of Indian Sundarban using DSAS model. The Egyptian Journal of Remote Sensing and Space Science, 24 (3), 961–970. doi: 10.1016/j.ejrs.2021.09.004
  • Deepika, B., Avinash, K., Jayappa, K. (2014). Shoreline change rate estimation and its forecast: remote sensing, geographical information system and statistics-based approach. International Journal of Environmental Science and Technology, 11, 395–416. doi:10.1007/s13762-013-0196-1
  • Dereli, M. A., Tercan, E. (2020). Assessment of shoreline changes using historical satellite images and geospatial analysis along the Lake Salda in Turkey. Earth Science Informatics, 13 (3), 709–718. doi: 10.1007/s12145-020-00460-x
  • Dey, M., Jena, B. (2021). A shoreline change detection (2012–2021) and forecasting using digital shoreline analysis system (DSAS) tool: a case study of Dahej Coast, Gulf of Khambhat, Gujarat, India. Indonesian Journal of Geography, 53 (2), 295–309. doi: 10.22146/ijg.56297
  • Dolan, R., Fenster, M. S., Holme, S. J. (1991). Temporal analysis of shoreline recession and accretion. Journal of Coastal Research, 7 (3), 723–744.
  • Dutta, D., Kumar, T., Jayaram, C., Akram, W. (2022). Shoreline change analysis of Hooghly Estuary using multi-temporal Landsat data and Digital Shoreline Analysis System. In Geographic Information Systems and Applications in Coastal Studies. IntechOpen. doi: 10.5772/intechopen.103030
  • Elfadaly, A., Abutaleb, K., Naguib, D. M., Lasaponara, R. (2022). Detecting the environmental risk on the archaeological sites using satellite imagery in Basilicata Region, Italy. The Egyptian Journal of Remote Sensing and Space Science, 25 (1), 181–193. doi: 10.1016/j.ejrs.2022.01.007
  • Esmail, M., Mahmod, W. E., Fath, H. (2019). Assessment and prediction of shoreline change using multi-temporal satellite images and statistics: Case study of Damietta coast, Egypt. Applied Ocean Research, 82, 274–282. doi: 10.1016/j.apor.2018.11.009
  • Fenster, M. S., Dolan, R., Elder, J. F. (1993). A new method for predicting shoreline positions from historical data. Journal of Coastal Research, 9 (1), 147–171. https://www.jstor.org/stable/4298075 adresinden alınmıştır.
  • Guerrera, F., Martín-Martín, M., Tramontana, M., Nimon, B., Essotina Kpémoua, K. (2021). Shoreline changes and coastal erosion: The case study of the coast of Togo (Bight of Benin, West Africa Margin). Geosciences, 11 (2), 40. doi: 10.3390/geosciences11020040
  • Gulliver, F. P. (1899). Shoreline topography. In Proceedings of the American Academy of Arts and Sciences, 34 (8), 151–258.
  • Hay, B. J. (1994). Sediment and water discharge rates of Turkish Black Sea rivers before and after hydropower dam construction. Environmental Geology, 23 (4), 276–283. doi: 10.1007/BF00766743
  • Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., Farris, A. S. (2018). Digital Shoreline Analysis System (DSAS) version 5.0 user guide: U.S. Geological Survey Open-File Report 2018–1179.
  • Islam, M. S., Crawford, T. W. (2022). Assessment of spatio-temporal empirical forecasting performance of future shoreline positions. Remote Sensing, 14 (24), 6364. doi: 10.3390/rs14246364
  • Kokpinar, M., Guler, I., Darama, Y. (2000). Bafra Ovası Kızılırmak-Karadeniz birlesimindeki kıyı erozyonunun incelenmesi. III. Ulusal Kıyı Muhendisligi Sempozyumu, 507–524.
  • Köle, M. M., Ataol, M. (2016). Yeşilırmak Deltası’nda 2000–2016 yılları arasında gözlenen kıyı erozyonu. GEOMED 2016 4th International Geography Symposium, Antalya, Turkey, 23–26 May 2016.
  • Kuleli, T., Guneroglu, A., Karsli, F., Dihkan, M. (2011). Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Engineering, 38 (10), 1141–1149. doi: 10.1016/j.oceaneng.2011.05.006
  • Kumar, A., Narayana, A., Jayappa, K. (2010). Shoreline changes and morphology of spits along southern Karnataka, westcoast of India: A remote sensing and statistics-based approach. Geomorphology, 120 (3–4), 133–152. doi: 10.1016/j.geomorph.2010.02.023
  • Li, R., Liu, J.-K., Felus, Y. (2001). Spatial modeling and analysis for shoreline change detection and coastal erosion monitoring. Marine Geodesy, 24 (1), 1–12. doi: 10.1080/01490410121502
  • Liu, Q., Trinder, J. C. (2018). Sub-pixel technique for time series analysis of shoreline changes based on multispectral satellite imagery. In M. Marghany (Ed.), Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications, Tsunami Disasters, and Infrastructure. IntechOpen. doi: 10.5772/intechopen.81789
  • Mahapatra, M., Ratheesh, R., Rajawat, A. (2014). Shoreline change analysis along the coast of South Gujarat, India, using digital shoreline analysis system. Journal of the Indian Society of Remote Sensing, 42, 869–876. doi: 10.1007/s12524-013-0334-8
  • Maiti, S., Bhattacharya, A. K. (2009). Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Marine Geology, 257 (1–4), 11–23. doi: 10.1016/j.margeo.2008.10.006
  • Mukhopadhyay, A., Mukherjee, S., Mukherjee, S., Ghosh, S., Hazra, S., Mitra, D. (2012). Automatic shoreline detection and future prediction: A case study on Puri Coast, Bay of Bengal, India. European Journal of Remote Sensing, 45 (1), 201–213. doi: 10.5721/EuJRS20124519
  • Murray, J., Adam, E., Woodborne, S., Miller, D., Xulu, S., Evans, M. (2023). Monitoring shoreline changes along the southwestern coast of South Africa from 1937 to 2020 using varied remote sensing data and approaches. Remote Sensing, 15 (2), 317. doi: 10.3390/rs15020317
  • Nandi, S., Ghosh, M., Kundu, A., Dutta, D., Baksi, M. (2016). Shoreline shifting and its prediction using remote sensing and GIS techniques: a case study of Sagar Island, West Bengal (India). Journal of Coastal Conservation, 20, 61–80. doi: 10.1007/s11852-015-0418-4
  • Nazeer, M., Waqas, M., Shahzad, M. I., Zia, I., Wu, W. (2020). Coastline vulnerability assessment through landsat and cubesats in a coastal mega city. Remote Sensing, 12 (5), 749. doi: 10.3390/rs12050749
  • Nikolakopoulos, K., Kyriou, A., Koukouvelas, I., Zygouri, V., Apostolopoulos, D. (2019). Combination of aerial, satellite, and UAV photogrammetry for mapping the diachronic coastline evolution: the case of Lefkada Island. ISPRS International Journal of Geo-Information, 8 (11), 489. doi: 10.3390/ijgi8110489
  • Oyedotun, T. D. T. (2014). Shoreline geometry: DSAS as a tool for historical trend analysis. In Geomorphological Techniques, 3,1–12.
  • Ozturk, D., Beyazit, I., Kilic, F. (2015). Spatiotemporal analysis of shoreline changes of the Kizilirmak Delta. Journal of Coastal Research, 31 (6), 1389–1402. doi: 10.2112/JCOASTRES-D-14-00159.1
  • Ozturk, D., Sesli, F. A. (2015). Shoreline change analysis of the Kizilirmak Lagoon Series. Ocean & Coastal Management, 118, 290–308. doi: 10.1016/j.ocecoaman.2015.03.009
  • Özdemir, S. (2010). Kızılırmak Deltasında aktüel kıyı çizgisi değişiklikleri ve sonuçları [Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi, Sosyal Bilimler Enstitüsü]. https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=veR1mHu9yoWjwcVUjCEoPEIzvN6DuyGMCUiNQL-5wi4RbdEcVoMji9yu_jX6kg4k adresinden alınmıştır.
  • Profillidis, V., Botzoris, G. (2019). Statistical methods for transport demand modeling. In Modeling of Transport Demand (163–224). Elsevier. doi: 10.1016/B978-0-12-811513-8.00005-4
  • Ratner, B. (2009). The correlation coefficient: Its values range between+ 1/− 1, or do they?. Journal of Targeting, Measurement and Analysis for Marketing, 17 (2), 139–142. doi: 10.1057/jt.2009.5
  • Roy, S., Mahapatra, M., Chakraborty, A. (2018). Shoreline change detection along the coast of Odisha, India using digital shoreline analysis system. Spatial Information Research, 26, 563–571. doi: 10.1007/s41324-018-0199-6
  • Sertel, E., Findik, N., Kaya, S., Seker, D. Z., Samsunlu, A. (2008). Assessment of landscape changes in the Kizilirmak Delta, Turkey, using remotely sensed data and GIS. Environmental Engineering Science, 25 (3), 353–362. doi: 10.1089/ees.2006.0149
  • Sirat, A., Sezer, İ., Akay, H. (2012). Kızılırmak Deltası’nda organik çeltik tarımı. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 2 (2), 76–92. https://dergipark.org.tr/tr/pub/gumusfenbil/issue/7481/98615 adresinden alınmıştır.
  • Song, Y., Shen, Y., Xie, R., Li, J. (2021). A DSAS-based study of central shoreline change in Jiangsu over 45 years. Anthropocene Coasts, 4 (1), 115–128. doi: 10.1139/anc-2020-0001.
  • Tabiat Varlıklarını Koruma Genel Müdürlüğü (2019). Samsun Kızılırmak Deltası Doğal Sit Alanları Sulak Alan ve Kuş Cenneti: 2019–2023 Yönetim Planı.
  • Tanner, W. F. (1978). Standards for measuring shoreline change. Department of Geology, Florida State University, Tallahassee, FL, USA.
  • Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., Ergul, A. (2009). The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change: Geological Survey Open-File Report 2008–1278.
  • Turoğlu, H. (2010). Kızılırmak Deltası ve yakın çevresinin jeomorfolojik özellikleri ve insan yaşamındaki etkileri. Anadolu Araştırmaları, 19 (1), 99–111. https://dergipark.org.tr/tr/pub/iuanadolu/issue/1162/13625 adresinden alınmıştır.
  • USGS (2022). Landsat Collection 2 Level-2 Science Products. https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products adresinden alınmıştır.
  • USGS (2023). Earth Explorer. https://earthexplorer.usgs.gov/ adresinden alınmıştır.
  • Uzun, A. (2005). Samsun İli kıyılarında antropojenik değişmeler. TUQUA Türkiye Kuvaterner Sempozyumu V, İstanbul Teknik Universitesi, Avrasya Yerbilimleri Enstitüsü, İsntanbul, 02–05 Haziran 2005.
  • Warnasuriya, T. W. S., Gunaalan, K., Gunasekara, S. S. (2018). Google earth: A new resource for shoreline change estimation—Case study from Jaffna Peninsula, Sri Lanka. Marine Geodesy, 41 (6), 546–580. doi: 10.1080/01490419.2018.1509160
  • Weerasingha, W. A. D. B., Ratnayake, A. S. (2022). Coastal landform changes on the east coast of Sri Lanka using remote sensing and geographic information system (GIS) techniques. Remote Sensing Applications: Society and Environment, 26, 100763. doi: 10.1016/j.rsase.2022.100763
  • Wicaksono, A., Wicaksono, P., Khakhim, N., Farda, N. M., Marfai, M. A. (2019). Semi-automatic shoreline extraction using water index transformation on Landsat 8 OLI imagery in Jepara Regency. Sixth International Symposium on LAPAN-IPB Satellite.
  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of remote Sensing, 27 (14), 3025–3033. doi: 10.1080/01431160600589179
  • Xu, J. (2020). Developments in management science in engineering 2018: perspectives from scientific journals. Cambridge Scholars Publishing.
  • Yılmaz, C. (2005). Kızılırmak Deltasında meydana gelen erozyonun coğrafi analizi. Türkiye Kuvaterner Sempozyumu, 2–5 Haziran 2005, İTÜ Avrasya Yer bilimleri Enstitüsü.
  • Yüksek, Ö. (2008). Samsun’un batı kıyılarındaki erozyonların incelenmesi. Samsun Kent Sempozyumu Bildiriler Kitabı. TMMOB Samsun İl Koordinasyon Kurulu, Samsun.
  • Zagórski, P., Jarosz, K., Superson, J. (2020). Integrated assessment of shoreline change along the Calypsostranda (Svalbard) from remote sensing, field survey and GIS. Marine Geodesy, 43 (5), 433–471. doi: 10.1080/01490419.2020.1715516
  • Zeybek, H. İ., Bağcı, H. R., Bahadır, M. (2018). Kızılırmak Deltasında (Samsun) kıyı çizgisi değişimlerinin Bruun Kuralına göre değerlendirilmesi. Uluslararası Sosyal Araştırmalar Dergisi, 11 (58), 308–317.
  • Zeybek, H. İ., Uzun, A., Yılmaz, C., Özdemir, S. (2011). Kızılırmak Deltası’nda kıyı çizgisi değisikliklerinin sonuçları. Samsun Sempozyumu Samsun.
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Geospatial Information Systems and Geospatial Data Modelling, Geomatic Engineering (Other), Remote Sensing
Journal Section Research Article
Authors

Derya Öztürk 0000-0002-0684-3127

Sibel Uzun 0000-0001-5814-7054

Early Pub Date August 10, 2023
Publication Date October 30, 2023
Published in Issue Year 2023 Volume: 21 Issue: 2

Cite

APA Öztürk, D., & Uzun, S. (2023). Kızılırmak Deltası Kıyı Çizgisinin EPR ve LRR Yöntemleriyle 1984–2022 Periyodunda Değişim Analizi ve 2030 Yılı Tahmini. Coğrafi Bilimler Dergisi, 21(2), 306-339. https://doi.org/10.33688/aucbd.1310132