Research Article
BibTex RIS Cite

Pisagor Teoremini Nasıl Öğretirsiniz: Ders Planlarının Analizi

Year 2018, Volume: 51 Issue: 1, 119 - 141, 01.04.2018
https://doi.org/10.30964/auebfd.405041

Abstract



Bu araştırma pedagojik formasyon sertifika programına katılan matematik
bölümü mezunları üzerinde yapılmıştır. Katılımcılardan lise dokuzuncu sınıf
matematik dersi programındaki Pisagor teoremi kazanımı için bir ders planı
hazırlamaları istenmiştir. Kırküç katılımcının on sekizinin ders planlarında
Pisagor teoreminin ispatına yer verdikleri tespit edilmiştir. Ders planlarında
verilen ispatlar; görsel ispat (iki katılımcı), cebirsel ispat (dokuz
katılımcı) ve üçgen benzerliğinin kullanıldığı ispat (yedi katılımcı) olarak üç
kategoride değerlendirilmiştir. Bunun dışında, ders planlarında verilen çözümlü
örnek, ev ödevi ve ölçme değerlendirme soruları TIMSS bilişsel düzeylerine göre
bilgi, uygulama ve akıl yürütme düzeylerinde sorular olarak
sınıflandırılmıştır. Kırküç katılımcının hazırladığı 233 sorunun yaklaşık % 37’sinin
bilgi, % 60’ının uygulama ve % 3’ünün akıl yürütme düzeyinde sorular olduğu
görülmüştür

References

  • An, S., Kulm, G., and Wu, Z. (2002). The impact of cultural difference on middle school mathematics teachers’ beliefs in the U.S. and China. Pre-conference proceedings of the ICMI comparative conference (pp.105-114). 20th-25th, October, 2002. Faculty of Education, the University of Hong Kong, Hong Kong SAR, China.
  • Bell, E. T. (1953). Men of mathematics. London: Penguin Books.
  • Chambers, P. (1999). Teaching Pythagoras’ theorem. Still hazy after all these years. Mathematics in School, 28(4), 22-24.
  • Crawford, D. (2001). Pythagoras’ theorem – more than just a square rule. Mathematics in School, 30(1), 14-17.
  • de Lemos, J. (1995). Reader reflections: The Pythagorean theorem. Mathematics Teacher, 88(1), 79-80.
  • Ferguson, K. (2008). Pythagoras. His lives and the legacy of a rational universe. New York: Walker Publishing Company.
  • Givental, A. (2006). The Pythagorean theorem: What is it about? The American Mathematical Monthly, 113(3), 261-265.
  • Hodgkin, L. (2005). A history of mathematics. From Mesopotamia to modernity. Oxford: Oxford University Press.
  • Huang, R., and Leung, F. K. S. (2002). How Pythagoras’ theorem is taught in Czech Republic, Hong Kong and Shanghai: A case study. ZDM Mathematics Education, 34(6), 268-277.
  • Huang, R., and Leung, F. K. S. (2004). Cracking the paradox of Chinese learners: Looking into the mathematics classrooms in Hong Kong and Shanghai. In L. Fan, N. Y. Wong, J. Cai and S. Li (Eds.) How Chinese learn mathematics perspectives from insiders (pp. 348-381). Singapore: World Scientific Publishing.
  • Hugener, I., Pauli, C., Reusser, K., Lipowsky, F., Rakoczy, K., and Klieme, E. (2009). Teaching patterns and learning quality in Swiss and German mathematics lessons. Learning and Instruction, 19, 66-78. doi:10.1016/j.learninstruc.2008.02.001
  • Joost-Gaugier, C. L. (2009). Pythagoras and renaissance Europe: Finding heaven. Cambridge, MA: Cambridge University Press.
  • Kahn, C. H. (2001). Pythagoras and the Pythagoreans: A brief history. Indianapolis, IN: Hackett Publishing Company.
  • Kaplan, R., and Kaplan, E. (2011). Hidden harmonies: The lives and times of the Pythagorean theorem. New York: Bloombury Press.
  • Karasar, N. (2012). Bilimsel araştırma yöntemi. Ankara: Nobel Akademik Yayıncılık.
  • Katz, V. J. (1998). A history of mathematics: An introduction. New York: Addison-Wesley.
  • Lipowsky, F., Rakoczy, K., Pauli, C., Drollinger-Vetter, B., Klieme, E., and Reusser, K. (2009). Quality of geometry instruction and its short-term impact on students’ understanding of the Pythagorean theorem. Learning and Instruction, 19, 527-537. doi:10.1016/j.learninstruc. 2008.11.001
  • Loomis, E. S. (1968). The Pythagorean proposition. Washington, DC: National Council of Teachers of Mathematics.
  • Martinez, A. A. (2012). The cult of Pythagoras: Math and myths. Pittsburgh, PA: University of Pittsburgh Press.
  • Maor, E. (2007). The Pythagorean theorem. A 4,000 year history. Princeton, NJ: Princeton University Press.
  • MEB (2013). Ortaöğretim matematik dersi öğretim programı. Ankara: Milli Eğitim Bakanlığı.
  • Mullis, I. V. C., Martin, M. O., Ruddock, G. Y., O’Sullivan, C. Y. and Preuschoff, C. (2009). TIMSS 2011 assessment framework. Boston: Boston College Publication.
  • Nelsen, R. B. (1993). Proofs without words. Washington, DC: The Mathematics Association of America.
  • Pickover, C. A. (2009). The math book. From Pythagoras to the 57th dimension, 250 milestones in the history of mathematics. New York: Sterling.
  • Sparks, J. C. (2008). The Pythagorean theorem. Crown jewel of mathematics. Xenia, OH: Author House.
  • Stein, M. K., and Smith, M. S. (1998). Mathematics tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268-275.
  • Strathern, P. (1997). Pythagoras and his theorem. London: Arrow Books.
  • Veljan, D. (2000). The 2,500-year-old Pythagorean theorem. Mathematics Magazine, 73(4), 259-272.
  • Yang, Y. (2009). How a Chinese teacher improved classroom teaching in Teaching Research Group: a case study on Pythagoras theorem teaching in Shanghai. ZDM Mathematics Education, 41, 279-296. doi: 10.1007/s11858-009-0171-y
  • Yıldırım, A., and Şimşek, H. (2000). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayınevi.

How to Teach the Pythagorean Theorem: An Analysis of Lesson Plans

Year 2018, Volume: 51 Issue: 1, 119 - 141, 01.04.2018
https://doi.org/10.30964/auebfd.405041

Abstract

This research was conducted among mathematics graduates who
participated in a pedagogical formation certificate program. Participants were
asked to prepare a lesson plan intended for use in teaching the Pythagorean
theorem as part of a ninth grade mathematics course. Eighteen out of 43
participants included a proof of the Pythagorean theorem as a component of
their lesson plan. These proofs were classified in three categories
: visual proofs (two participants),
algebraic proofs (nine participants), and proofs by using triangular
similarities (seven participants). In addition, the solved examples, homework,
and evaluation questions included in the lesson plans were classified according
to TIMSS cognitive levels. Of the 233 questions prepared by
43 participants, 37% of the questions were at the knowledge level, 60% were at the application level, and the remaining 3% were at the reasoning level.

References

  • An, S., Kulm, G., and Wu, Z. (2002). The impact of cultural difference on middle school mathematics teachers’ beliefs in the U.S. and China. Pre-conference proceedings of the ICMI comparative conference (pp.105-114). 20th-25th, October, 2002. Faculty of Education, the University of Hong Kong, Hong Kong SAR, China.
  • Bell, E. T. (1953). Men of mathematics. London: Penguin Books.
  • Chambers, P. (1999). Teaching Pythagoras’ theorem. Still hazy after all these years. Mathematics in School, 28(4), 22-24.
  • Crawford, D. (2001). Pythagoras’ theorem – more than just a square rule. Mathematics in School, 30(1), 14-17.
  • de Lemos, J. (1995). Reader reflections: The Pythagorean theorem. Mathematics Teacher, 88(1), 79-80.
  • Ferguson, K. (2008). Pythagoras. His lives and the legacy of a rational universe. New York: Walker Publishing Company.
  • Givental, A. (2006). The Pythagorean theorem: What is it about? The American Mathematical Monthly, 113(3), 261-265.
  • Hodgkin, L. (2005). A history of mathematics. From Mesopotamia to modernity. Oxford: Oxford University Press.
  • Huang, R., and Leung, F. K. S. (2002). How Pythagoras’ theorem is taught in Czech Republic, Hong Kong and Shanghai: A case study. ZDM Mathematics Education, 34(6), 268-277.
  • Huang, R., and Leung, F. K. S. (2004). Cracking the paradox of Chinese learners: Looking into the mathematics classrooms in Hong Kong and Shanghai. In L. Fan, N. Y. Wong, J. Cai and S. Li (Eds.) How Chinese learn mathematics perspectives from insiders (pp. 348-381). Singapore: World Scientific Publishing.
  • Hugener, I., Pauli, C., Reusser, K., Lipowsky, F., Rakoczy, K., and Klieme, E. (2009). Teaching patterns and learning quality in Swiss and German mathematics lessons. Learning and Instruction, 19, 66-78. doi:10.1016/j.learninstruc.2008.02.001
  • Joost-Gaugier, C. L. (2009). Pythagoras and renaissance Europe: Finding heaven. Cambridge, MA: Cambridge University Press.
  • Kahn, C. H. (2001). Pythagoras and the Pythagoreans: A brief history. Indianapolis, IN: Hackett Publishing Company.
  • Kaplan, R., and Kaplan, E. (2011). Hidden harmonies: The lives and times of the Pythagorean theorem. New York: Bloombury Press.
  • Karasar, N. (2012). Bilimsel araştırma yöntemi. Ankara: Nobel Akademik Yayıncılık.
  • Katz, V. J. (1998). A history of mathematics: An introduction. New York: Addison-Wesley.
  • Lipowsky, F., Rakoczy, K., Pauli, C., Drollinger-Vetter, B., Klieme, E., and Reusser, K. (2009). Quality of geometry instruction and its short-term impact on students’ understanding of the Pythagorean theorem. Learning and Instruction, 19, 527-537. doi:10.1016/j.learninstruc. 2008.11.001
  • Loomis, E. S. (1968). The Pythagorean proposition. Washington, DC: National Council of Teachers of Mathematics.
  • Martinez, A. A. (2012). The cult of Pythagoras: Math and myths. Pittsburgh, PA: University of Pittsburgh Press.
  • Maor, E. (2007). The Pythagorean theorem. A 4,000 year history. Princeton, NJ: Princeton University Press.
  • MEB (2013). Ortaöğretim matematik dersi öğretim programı. Ankara: Milli Eğitim Bakanlığı.
  • Mullis, I. V. C., Martin, M. O., Ruddock, G. Y., O’Sullivan, C. Y. and Preuschoff, C. (2009). TIMSS 2011 assessment framework. Boston: Boston College Publication.
  • Nelsen, R. B. (1993). Proofs without words. Washington, DC: The Mathematics Association of America.
  • Pickover, C. A. (2009). The math book. From Pythagoras to the 57th dimension, 250 milestones in the history of mathematics. New York: Sterling.
  • Sparks, J. C. (2008). The Pythagorean theorem. Crown jewel of mathematics. Xenia, OH: Author House.
  • Stein, M. K., and Smith, M. S. (1998). Mathematics tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268-275.
  • Strathern, P. (1997). Pythagoras and his theorem. London: Arrow Books.
  • Veljan, D. (2000). The 2,500-year-old Pythagorean theorem. Mathematics Magazine, 73(4), 259-272.
  • Yang, Y. (2009). How a Chinese teacher improved classroom teaching in Teaching Research Group: a case study on Pythagoras theorem teaching in Shanghai. ZDM Mathematics Education, 41, 279-296. doi: 10.1007/s11858-009-0171-y
  • Yıldırım, A., and Şimşek, H. (2000). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayınevi.
There are 30 citations in total.

Details

Primary Language English
Subjects Studies on Education
Journal Section Articles
Authors

Necdet Güner

Publication Date April 1, 2018
Published in Issue Year 2018 Volume: 51 Issue: 1

Cite

APA Güner, N. (2018). How to Teach the Pythagorean Theorem: An Analysis of Lesson Plans. Ankara University Journal of Faculty of Educational Sciences (JFES), 51(1), 119-141. https://doi.org/10.30964/auebfd.405041
Ankara University Journal of Faculty of Educational Sciences (AUJFES) is a formal journal of Ankara University.

The content of the Journal of Faculty of Educational Sciences adopts Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

AUJFES is licensed under CC BY-NC-ND 4.0