Research Article
BibTex RIS Cite
Year 2023, Volume: 65 Issue: 2, 115 - 129, 29.12.2023
https://doi.org/10.33769/aupse.1247233

Abstract

References

  • Lee, S., Chan, C., Mayo, S.J., & Remagnino, P., How deep learning extract and learns leaf features for the plant classification, Pattern Recognit., 71 (2017), 1-13, https://doi.org/10.1016/j.patcog.2017.05.015.
  • Çetiner, H., Yaprak hastalıklarının sınıflandırılabilmesi için önceden eğitilmiş ağ tabanlı derin ağ modeli, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8 (15) (2021), 442-456.
  • Sagar, A., Dheeba, J., On using transfer learning for plant disease detection, BioRxiv, (2020), https://doi.org/10.13140/RG.2.2.12224.15360/1.
  • Kamilaris, A., Prenafeta-Boldu, F. X., Deep learning in agriculture: A survey, Comput. Electron. Agric., 147 (2018), 70-90, https://doi.org/10.1016/j.compag.2018.02.016.
  • Yaman, O., Tuncer, T., Bitkilerdeki yaprak hastalığı tespiti için derin özellik çıkarma ve makine öğrenmesi yöntemi, FÜMBD, 34 (1) (2022), 123-132, https://doi.org/10.35234/fumbd.982348.
  • Liu, B., Zhang, Y., He, D., Li, Y., Identification of apple leaf diseases based on deep convolutional neural networks, Symmetry, 10 (1) (2017), 11, https://doi.org/10.3390/sym10010011.
  • Vishnoi, V., Kumar, K., Kumar, B., Plant disease detection using computational intelligence and image processing, JPDP, 128 (2021), 19-53, https://doi.org/10.1007/s41348-020-00368-0.
  • Unal, M., Bostancı, E., Guzel, M.S., Aydın, A., Modern learning techniques and plant image classification, Commun. Fac. Sci. Univ. Ank. Series A2-A3, 62 (2) (2020), 153-163.
  • Tuğrul, B., Classification of five different rice seeds grown in Turkey with deep learning methods, Commun. Fac. Sci. Univ. Ank. Series A2-A3, 64 (1) (2022), 40-50.
  • Camgözlü, Y., Kutlu, Y., Yaprak sınıflandırmak için yeni bir evrişimli sinir ağı modeli geliştirilmesi, BŞEÜ Fen Bilimleri Dergisi, 8 (2) (2021), 567-574.
  • Göksu, M., Sünnetci, K. M., Alkan, A., Derin öğrenme ağları kullanılarak mısır yapraklarında hastalık tespiti, Comput. Sci., (Special) (2021), 208-216.
  • Sert, E., A deep learning based approach for the detection of diseases in pepper and potato leaves, Anadolu Tarım Bilimleri Dergisi, 36 (2) (2021), 167-178.
  • Önler E., Feature fusion based artificial neural network model for disease detection of bean leaves, ERA, 31 (5) (2023), 2409-2427, https://doi.org/ 10.3934/era.2023122.
  • Abed, S., Esmaeel, A. A., A novel approach to classify and detect bean diseases based on image processing, 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), (2018), 297-302, https://doi.org/10.1109/ISCAIE.2018.8405488.
  • Abed, S. H., Al-Waisy, A. S., Mohammed, H. J. et al. A modern deep learning framework in robot vision for automated bean leaves diseases detection, Int. J. Intell. Robot. Appl., 5 (2021), 235-251, https://doi.org/10.1007/s41315-021-00174-3.
  • Muneer, A., Fati, S. M., Efficient and automated herbs classification approach based on shape and texture features using deep learning, IEEE Access, 8 (2020), 196747-196764, https://doi.org/10.1109/access.2020.3034033.
  • Rautaray, S. S., Pandey, M., Gourisaria, M. K., Sharma, R., Das, S., Paddy crop disease prediction- a transfer learning technique, IJRTE, 8 (6) (2020), 1490-1495, https://doi.org/10.35940/ijrte.f7782.038620.
  • Lu, J., Tan, L., Jiang, H., Review on convolutional neural network (CNN) applied to plant leaf disease classification, Agriculture, 11 (8) (2021), 707, https://doi.org/10.3390/agriculture11080707.
  • Sumalatha, G., Singothu, J. R., Rao, S. K., Transfer learning-based plant disease detection, IJIEMR, 10 (3) (2021), 469-477, https://doi.org/10.48047/IJIEMR/V10/I03/99.
  • Tammina, S., Transfer learning using vgg-16 with deep convolutional neural network for classifying images, IJSRP, 9 (10) (2019), 143-150, https://doi.org/10.29322/ijsrp.9.10.2019.p9420.
  • Falconí, L.G., Pérez, M., Aguilar, W.G., Transfer learning in breast mammogram abnormalities classification with mobilenet and nasnet, 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), (2019), 109-114, https://doi.org/10.1109/iwssip.2019.8787295.
  • Mukti, I. Z., Biswas, D., Transfer learning based plant diseases detection using ResNet50, 2019 4th International Conference on Electrical Information and Communication Technology (EICT), (2019), 1-6, https://doi.org/10.1109/eict48899.2019.9068805

Disease detection in bean leaves using deep learning

Year 2023, Volume: 65 Issue: 2, 115 - 129, 29.12.2023
https://doi.org/10.33769/aupse.1247233

Abstract

The care and health of agricultural plants, which are the primary source for people to eat healthily, are essential. Disease detection in plants is one of the critical elements of smart agriculture. In parallel with the development of artificial intelligence, advancements in smart agriculture are also progressing. The development of deep learning techniques positively affects smart farming practices. Today, using deep learning and computer vision techniques, various plant diseases can be detected from images such as photographs. In this research, deep learning techniques were used to detect and diagnose bean leaf diseases. Healthy and diseased bean leaf images were used to train the convolutional neural network (CNN) model, which is one of the deep learning techniques. Transfer learning was applied to CNN models to detect plant diseases with the difference of related works. A transfer learning-based strategy to identify various diseases in plant varieties is demonstrated using leaf images of healthy and diseased plants from the Bean dataset. With the proposed method, 1295 images were studied. The results show that our technique successfully identified disease status in bean leaf images, achieving an accuracy of 98.33% with the ResNet50 model.

References

  • Lee, S., Chan, C., Mayo, S.J., & Remagnino, P., How deep learning extract and learns leaf features for the plant classification, Pattern Recognit., 71 (2017), 1-13, https://doi.org/10.1016/j.patcog.2017.05.015.
  • Çetiner, H., Yaprak hastalıklarının sınıflandırılabilmesi için önceden eğitilmiş ağ tabanlı derin ağ modeli, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8 (15) (2021), 442-456.
  • Sagar, A., Dheeba, J., On using transfer learning for plant disease detection, BioRxiv, (2020), https://doi.org/10.13140/RG.2.2.12224.15360/1.
  • Kamilaris, A., Prenafeta-Boldu, F. X., Deep learning in agriculture: A survey, Comput. Electron. Agric., 147 (2018), 70-90, https://doi.org/10.1016/j.compag.2018.02.016.
  • Yaman, O., Tuncer, T., Bitkilerdeki yaprak hastalığı tespiti için derin özellik çıkarma ve makine öğrenmesi yöntemi, FÜMBD, 34 (1) (2022), 123-132, https://doi.org/10.35234/fumbd.982348.
  • Liu, B., Zhang, Y., He, D., Li, Y., Identification of apple leaf diseases based on deep convolutional neural networks, Symmetry, 10 (1) (2017), 11, https://doi.org/10.3390/sym10010011.
  • Vishnoi, V., Kumar, K., Kumar, B., Plant disease detection using computational intelligence and image processing, JPDP, 128 (2021), 19-53, https://doi.org/10.1007/s41348-020-00368-0.
  • Unal, M., Bostancı, E., Guzel, M.S., Aydın, A., Modern learning techniques and plant image classification, Commun. Fac. Sci. Univ. Ank. Series A2-A3, 62 (2) (2020), 153-163.
  • Tuğrul, B., Classification of five different rice seeds grown in Turkey with deep learning methods, Commun. Fac. Sci. Univ. Ank. Series A2-A3, 64 (1) (2022), 40-50.
  • Camgözlü, Y., Kutlu, Y., Yaprak sınıflandırmak için yeni bir evrişimli sinir ağı modeli geliştirilmesi, BŞEÜ Fen Bilimleri Dergisi, 8 (2) (2021), 567-574.
  • Göksu, M., Sünnetci, K. M., Alkan, A., Derin öğrenme ağları kullanılarak mısır yapraklarında hastalık tespiti, Comput. Sci., (Special) (2021), 208-216.
  • Sert, E., A deep learning based approach for the detection of diseases in pepper and potato leaves, Anadolu Tarım Bilimleri Dergisi, 36 (2) (2021), 167-178.
  • Önler E., Feature fusion based artificial neural network model for disease detection of bean leaves, ERA, 31 (5) (2023), 2409-2427, https://doi.org/ 10.3934/era.2023122.
  • Abed, S., Esmaeel, A. A., A novel approach to classify and detect bean diseases based on image processing, 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), (2018), 297-302, https://doi.org/10.1109/ISCAIE.2018.8405488.
  • Abed, S. H., Al-Waisy, A. S., Mohammed, H. J. et al. A modern deep learning framework in robot vision for automated bean leaves diseases detection, Int. J. Intell. Robot. Appl., 5 (2021), 235-251, https://doi.org/10.1007/s41315-021-00174-3.
  • Muneer, A., Fati, S. M., Efficient and automated herbs classification approach based on shape and texture features using deep learning, IEEE Access, 8 (2020), 196747-196764, https://doi.org/10.1109/access.2020.3034033.
  • Rautaray, S. S., Pandey, M., Gourisaria, M. K., Sharma, R., Das, S., Paddy crop disease prediction- a transfer learning technique, IJRTE, 8 (6) (2020), 1490-1495, https://doi.org/10.35940/ijrte.f7782.038620.
  • Lu, J., Tan, L., Jiang, H., Review on convolutional neural network (CNN) applied to plant leaf disease classification, Agriculture, 11 (8) (2021), 707, https://doi.org/10.3390/agriculture11080707.
  • Sumalatha, G., Singothu, J. R., Rao, S. K., Transfer learning-based plant disease detection, IJIEMR, 10 (3) (2021), 469-477, https://doi.org/10.48047/IJIEMR/V10/I03/99.
  • Tammina, S., Transfer learning using vgg-16 with deep convolutional neural network for classifying images, IJSRP, 9 (10) (2019), 143-150, https://doi.org/10.29322/ijsrp.9.10.2019.p9420.
  • Falconí, L.G., Pérez, M., Aguilar, W.G., Transfer learning in breast mammogram abnormalities classification with mobilenet and nasnet, 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), (2019), 109-114, https://doi.org/10.1109/iwssip.2019.8787295.
  • Mukti, I. Z., Biswas, D., Transfer learning based plant diseases detection using ResNet50, 2019 4th International Conference on Electrical Information and Communication Technology (EICT), (2019), 1-6, https://doi.org/10.1109/eict48899.2019.9068805
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Soydan Serttaş 0000-0001-8887-8675

Emine Deniz 0000-0003-0670-3578

Early Pub Date October 7, 2023
Publication Date December 29, 2023
Submission Date February 3, 2023
Acceptance Date April 28, 2023
Published in Issue Year 2023 Volume: 65 Issue: 2

Cite

APA Serttaş, S., & Deniz, E. (2023). Disease detection in bean leaves using deep learning. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 65(2), 115-129. https://doi.org/10.33769/aupse.1247233
AMA Serttaş S, Deniz E. Disease detection in bean leaves using deep learning. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. December 2023;65(2):115-129. doi:10.33769/aupse.1247233
Chicago Serttaş, Soydan, and Emine Deniz. “Disease Detection in Bean Leaves Using Deep Learning”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 65, no. 2 (December 2023): 115-29. https://doi.org/10.33769/aupse.1247233.
EndNote Serttaş S, Deniz E (December 1, 2023) Disease detection in bean leaves using deep learning. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 65 2 115–129.
IEEE S. Serttaş and E. Deniz, “Disease detection in bean leaves using deep learning”, Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng., vol. 65, no. 2, pp. 115–129, 2023, doi: 10.33769/aupse.1247233.
ISNAD Serttaş, Soydan - Deniz, Emine. “Disease Detection in Bean Leaves Using Deep Learning”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 65/2 (December 2023), 115-129. https://doi.org/10.33769/aupse.1247233.
JAMA Serttaş S, Deniz E. Disease detection in bean leaves using deep learning. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2023;65:115–129.
MLA Serttaş, Soydan and Emine Deniz. “Disease Detection in Bean Leaves Using Deep Learning”. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, vol. 65, no. 2, 2023, pp. 115-29, doi:10.33769/aupse.1247233.
Vancouver Serttaş S, Deniz E. Disease detection in bean leaves using deep learning. Commun.Fac.Sci.Univ.Ank.Series A2-A3: Phys.Sci. and Eng. 2023;65(2):115-29.

Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.