Research Article
BibTex RIS Cite

Gıda Tatlandırıcıları Glikasyon Ürünleri Uyarımlı Amiloid Oluşumu Üzerine Fosfodiesteraz 1B Geni Ekspresyon Seviyelerinin Araştırılması

Year 2019, Volume: 2 Issue: 2, 80 - 87, 29.05.2019

Abstract

Araştırmada yüksek früktoz diyeti tüketimine bağlı hücrede ortaya çıkan metabolik son ürün metilgliyoksalin in vitro beta amiloid oluşumu, ikincil haberci molekül siklik adenozin monofosfat (cAMP) ve bu molekülün parçalanmasını sağlayan fosfodiesteraz 1 (PDE1) üzerine etkilerinin araştırılması amaçlandı. Çalışmada insan orijinli glioblastoma U-87 MG (ATCC HTB-14) hücre hattı kullanıldı. Hücreler, içeriğinde %10 oranında fötal sığır serumu (FBS) ve penisilin/ streptomisin/amfoterisin B karışımı bulunduran Eagle’s Minimum Essential Medium (E-MEM) besi ortamında, 37°C, %5 CO2 ve %95 hava bulunduran steril inkübatörde üretildi. Çalışmada 1 gün önceden 24 kuyucuklu besi kaplarına ekilen hücrelere farklı konsantrasyonlarda metilgliyoksal (100- 400 um) eklendi. Süre sonunda kuyucuklara MTT (Thiazolyl Blue Tetrazolium Bromide) ayıracı eklenerek metilgliyoksalin etkin konsantrasyonu tespit edildi. Sonraki denemelerde bu konsantrasyon hücrelere uygulanarak 24 saatin sonunda alınan RNA örneklerinden PDE 1B, PDE 1B1 ve Aβ1-40 gen ekspreyon düzeyleri real time PCR metoduyla araştırıldı. Yine alınan protein örneklerinden cAMP düzeyi ise ELİSA metoduyla analiz edildi. Araştırmada yapılan canlılık kontrollerinde metilgliyoksalin 200 uM konsantrasyonu kontrol grubuna göre hücreleri %28 oranında azalttığı gözlendi. Bu konsantrasyon etkin konsantrasyon olarak kabul edilerek sonraki çalışmalar için kullanıldı. Yine metilglyoksalin hücreiçi cAMP düzeyini %31 oranında arttırdığı tespit edildi. Elde edilen gen ekspresyon verilerine göre metilgliyoksal Aβ1-40 gen ekspresyonunu 3.7 kat arttırıken, sırasıyla PDE1B ve PDE1B1 gen ekspresyonlarını ise 1.6 ve 3.3 kat baskıladığı ettiği tespit edildi. Yapılan araştırmada fruktoz diyetinin etkilenen bireylerde Alzheimer hastalığının patogenezinde anlamlı derecede etkileyeceği kanısına varıldı. Ancak konunun tam aydınlatılması için başta in vivo denemeler olmak üzere ve daha ileri araştırmalara ihtiyaç duyulmaktadır.

References

  • Abramov AY, Canevari L and Duchen MR. (2004). β -amyloid peptides inducemitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. Journal of Neuroscience 24:565–575.
  • Aliev G, Liu J, Shenk JC, Fischbach K, Pacheco GJ, Chen SG. (2009a). Neuronal mitochondrial amelioration by feeding acetyl-L-carnitine and lipoic acid to aged rats. J Cell Mol Med 13(2):320-33.
  • Aliev G, Palacios HH, Walrafen B, Lipsitt AE, Obrenovich ME, Morales L. (2009b). Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease. Int J Biochem Cell Biol 41(10):1989- 2004. Al-Malki AL, Barbour EK, Ea H, Moselhy S, ALZahrani AHS, Kumosani TA. (2017). Signaling pathways regulated by brassicaceae extract inhibit the formationof advanced glycated end products in rat brain. Afr J Tradit Complement Altern Med 14(2): 234-240.
  • Ames B, Shingenaga M, Park EM. (1991). Oxidation damage and repair: chemical, biological and medical aspects. Elmsford, United Kingdom, Pergamon Press.
  • Angeloni C, Turroni S, Bianchi L et al. (2013). Novel targets of sulforaphane in primary cardiomyocytes identified by proteomic analysis. PLoS ONE 8(12): 832-833.
  • Arriba SG, Kr¨ugal U, Regenthal R. et al. (2006). Carbonyl stress and NMDA receptor activation contribute to methylglyoxal neurotoxicity. Free Radical Biology and Medicine 40(5): 779–790.
  • Arriba SG, Stuchbury G, Yarin J, Burnell J, Loske C and Munch G. (2007). Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells protection by carbonyl scavengers. Neurobiol Aging 28: 1044–1050.
  • Brad PD, Chantal AV. (2013). A proposed mechanism for exercise attenuated methylglyoxal accumulation: Activation of the ARE-Nrf pathway and increased glutathione biosynthesis. Medical Hypotheses 81: 813– 815.
  • Brandenburg LO, Konrad M, Wruck CJ, Koch T, Lucius R, Pufe T. (2010). Functional and physical interactions between formyl-peptide-receptors and scavenger receptor MARCO and their involvement in amyloid beta 1-42- induced signal transduction in glial cells. J Neurochem 113: 749–760.
  • Brunk UT, Terman A. (2002). The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269: 1996–2002.
  • Chen TC, Hinton DR, Zidovetzki R, Hofman FM. (2010). Up-regulation of the cAMP/PKA pathway inhibits proliferation, induces differentiation and leads to apoptosis in malignant gliomas. Lab Invest 78: 165–174. Cheng J and Grande JP. (2007). PDE Inhibitors: Novel therapeutic agents for Renal disease, Exp. Biol. Med 232: 38-51.
  • Christen Y. (2000). Oksidative Stress and Alzheimer disease. Am J Clin Nutr 71: 621-629.
  • Colombo A, Bastone A, Ploia C et al. (2009). JNK regulates APP cleavage and degradation in a model of Alzheimer’s disease. Neurobiology of Disease 33: 518–525.
  • Dousa TP. (1999). Cyclic-3’,5’- nucleotide phosphodiesterases isoenzyme in cell biology and Pathophysiology. Kidney International 55(1): 29-62.
  • Dutta D, Calvani R, Bernabei R, Leeuwenburgh C, Marzetti E. (2012). Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res, 110: 1125–1138.
  • Francis SH, Turko IV and Corbin JD. (2000). Cyclic nucleotide phosphodiesterases: Relating structure and function. Progress Nucleic Acid Res. Mol. Biol 65: 1-52.
  • Gomes R, Sousa MS, Quintas A, Cordeiro C, Freire A, Pereira P, Martins A, Monteiro E, Barroso E, Ponces FA. (2005). Argpyrimidine, a methylglyoxal-derived advanced glycation end-product in familial amyloidotic polyneuropathy. Biochem. J 385 339–345.
  • Halliwell B, Gutteridge JMC. (1989). Free radicals in biology and medicine. Oxford, United Kingdom: Oxford University Press.
  • Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS. (2001). Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21(9):3017-23.
  • Houslay MD, Milligan G. (1997). Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci 22: 217-224.
  • Huang CY, Chau V, Chock PB, Wang JH and Sharma RK. (1981). Mechanism of activation of cyclic nucleotide phosphodiesterase: requirement of the binding of four Ca2+ to calmodulin for activation. Proc. Natl. Acad. Sci 78: 871– 874.
  • Jung HA, Min BS, Yokozawa T, Lee JH, Kim YS, Choi JS. (2009). Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull 32(8):1433-8.
  • Li L, Yee C and Beavo J A. (1999). CD3- and CD28- dependent induction of PDE7 required for T cell activation. Science 283: 848–851.
  • Mattson MP, Magnus T. (2004). Ageing and neuronal vulnerability. Nat Rev Neurosci 7: 278-294.
  • Nyby MD, Hori MT, Ormsby B, Gabrielian A, Tuck ML. (2003). Eicosapentaenoic acid inhibits Ca2þ mobilization and PKC activity in vascular smooth muscle cells. Am. J. Hypertens 16:708–714.
  • Polli JW and Kincaid RL. (1992). Molecular cloning of DNA encoding a calmodulin-dependent phosphodiesterase enriched in striatum. Proc. Natl. Acad. Sci 89: 11079–11083.
  • Qi L, Chen Z, Wang Y, Liu X, Liu X, Ke L, Zheng Z, Lin X, Zhou Y, Wu L, Liu L. (2017). Subcutaneous liraglutide ameliorates methylglyoxal-induced Alzheimer like tau pathology and cognitive impairment by modulating tau hyperphosphorylation and glycogen synthase kinase-3β. Am J Transl Res 15;9(2):247-260.
  • Qui JS, Qiao JT. (2001). Amyloid beta-protein fragment 31-35 forms ion channels in membrane patch¬es excised from rat hippocampal neurons. Neuroscience, 105: 845-852.
  • Radu BM, Dumitrescu DI, Mustaciosu CC, Radu M. (2012). Dual effect of methylgly-oxal on the intracellular Ca2+signaling and neurite outgrowth in mouse sensoryneurons, Cell. Mol. Neurobiol 32:1047–1057.
  • Shen C, Chen Y, Liu H et al. (2008). Hydrogen peroxide promotes Aβ production through JNK-dependent activation of-secretase. The Journal of Biological Chemistry 283(25): 17721–17730.
  • Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck CJ, Pufe T, Brandenburg LO. (2012). Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener 20:7:55.
  • Srikanth V, Westcott B, Forbes J, Phan TG, Beare R, Venn A, Pearson S, Greenaway T, Parameswaran V, Munch G. (2013). Methylglyoxal, cognitive function and cerebral atrophy in older people. J Gerontol A Biol Sci Med Sci 68: 68-73.
  • Suzuki S, Yokoyama U, Abe T, Kiyonari H, Yamashita N, Kato Y, Kurotani R, Sato M, Okumura S, Ishikawa Y. (2010). Differential roles of Epac in regulating cell death in neuronal and myocardial cells. J Biol Chem 285:24248– 24259.
  • Svoboda N, Zierler S, Kerschbaum HH. (2007). cAMP mediates ammonia-induced programmed cell death in the microglial cell line BV-2. Eur J Neurosci 25: 2285–2295.
  • Thornalley P.J. (2005). Dicarbonyl intermediates in the Maillard reaction. Annals of the New York Academy of Sciences 1043:111–117.
  • Wells JN, Baird CE, Wu YJ and Hardman JG. (1975). Cyclic nucleotide phosphodiesterase activities of pig coronary arteries. Biochim. Biophys. Acta 384:430– 442.
  • Xie B, Lin F, Peng L, Ullah K, Wu H, Qing H and Deng Y. (2014). Methylglyoxal increases dopamine level and leads to oxidative stress in SH-SY5Y cells. Acta Biochim Biophys Sin 46: 950–956.
  • Zamora ZB, Borrego A, Lopez OY. (2005). Effects of ozone oxidative preconditioning on TNF-alpha release and antioxidant prooxidant intracellular balance in mice during endotoxic shock. Mediators Inflamm 24: 16–22.
  • Zhu X, Lee HG, Raina AK, Perry G and Smith MA. (2002). The role of mitogen-activated protein kinase pathways in Alzheimer’s disease. NeuroSignals 11(5): 270–281.

Investigation of Phosphodiesterase 1B Gene Expression Levels on Amyloid Formation Induced by Food Sweeteners Glycation Products

Year 2019, Volume: 2 Issue: 2, 80 - 87, 29.05.2019

Abstract

In this study, it was aimed to investigate the effects of methylglyoxal, metabolic end product of high-fructose diets, on in vitro beta amyloid formation, secondary messenger molecule cyclic adenosine monophosphate (cAMP), and phosphodiesterase 1 (PDE1), which is responsible for the breakdown of this molecule. Human Glioblastoma U-87 MG (ATCC HTB-14) cell line was used in the study. Cells were produced in a sterile incubator at 37°C, 5% CO2 and 95% air in Eagle’s Minimum Essential Medium (E-MEM) containing 10% of fetal bovine serum (FBS) and penicillin/streptomycin/ amphotericin B mixture. In the study, different concentrations of methylglyoxal (100-400 µM) were added to the cells sown in 24-wells one day in advance. At the end of the period, MTT (Thiazolyl Blue Tetrazolium Bromide) reagent was added to the wells to determine the effective concentration of methylglyoxal. Next, PDE1B, PDE1B1 and Aβ1-40 gene expression levels were investigated by real time PCR method. The cAMP protein level was analyzed by ELISA method. In the viability tests, 200 µM concentration of methylglyoxal decreased the cell viability by 28% compared to the control group. This concentration was used as the active concentration and was used for subsequent studies. Again, methylglyoxal was found to increase intracellular cAMP level by 31%. According to the obtained gene expression data, it was found that methylglyoxal was increased Aβ1-40 gene expression by 3.7-fold, whereas PDE1B and PDE1B1 gene expressions were regulated down by 1.6 and 3.3-fold respectively. It is concluded that the fructose diet will have a significant effect on the pathogenesis of Alzheimer’s disease in affected individuals. However, further investigations are needed, especially in vivo trials, to fully elucidate the subject.

References

  • Abramov AY, Canevari L and Duchen MR. (2004). β -amyloid peptides inducemitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. Journal of Neuroscience 24:565–575.
  • Aliev G, Liu J, Shenk JC, Fischbach K, Pacheco GJ, Chen SG. (2009a). Neuronal mitochondrial amelioration by feeding acetyl-L-carnitine and lipoic acid to aged rats. J Cell Mol Med 13(2):320-33.
  • Aliev G, Palacios HH, Walrafen B, Lipsitt AE, Obrenovich ME, Morales L. (2009b). Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease. Int J Biochem Cell Biol 41(10):1989- 2004. Al-Malki AL, Barbour EK, Ea H, Moselhy S, ALZahrani AHS, Kumosani TA. (2017). Signaling pathways regulated by brassicaceae extract inhibit the formationof advanced glycated end products in rat brain. Afr J Tradit Complement Altern Med 14(2): 234-240.
  • Ames B, Shingenaga M, Park EM. (1991). Oxidation damage and repair: chemical, biological and medical aspects. Elmsford, United Kingdom, Pergamon Press.
  • Angeloni C, Turroni S, Bianchi L et al. (2013). Novel targets of sulforaphane in primary cardiomyocytes identified by proteomic analysis. PLoS ONE 8(12): 832-833.
  • Arriba SG, Kr¨ugal U, Regenthal R. et al. (2006). Carbonyl stress and NMDA receptor activation contribute to methylglyoxal neurotoxicity. Free Radical Biology and Medicine 40(5): 779–790.
  • Arriba SG, Stuchbury G, Yarin J, Burnell J, Loske C and Munch G. (2007). Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells protection by carbonyl scavengers. Neurobiol Aging 28: 1044–1050.
  • Brad PD, Chantal AV. (2013). A proposed mechanism for exercise attenuated methylglyoxal accumulation: Activation of the ARE-Nrf pathway and increased glutathione biosynthesis. Medical Hypotheses 81: 813– 815.
  • Brandenburg LO, Konrad M, Wruck CJ, Koch T, Lucius R, Pufe T. (2010). Functional and physical interactions between formyl-peptide-receptors and scavenger receptor MARCO and their involvement in amyloid beta 1-42- induced signal transduction in glial cells. J Neurochem 113: 749–760.
  • Brunk UT, Terman A. (2002). The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269: 1996–2002.
  • Chen TC, Hinton DR, Zidovetzki R, Hofman FM. (2010). Up-regulation of the cAMP/PKA pathway inhibits proliferation, induces differentiation and leads to apoptosis in malignant gliomas. Lab Invest 78: 165–174. Cheng J and Grande JP. (2007). PDE Inhibitors: Novel therapeutic agents for Renal disease, Exp. Biol. Med 232: 38-51.
  • Christen Y. (2000). Oksidative Stress and Alzheimer disease. Am J Clin Nutr 71: 621-629.
  • Colombo A, Bastone A, Ploia C et al. (2009). JNK regulates APP cleavage and degradation in a model of Alzheimer’s disease. Neurobiology of Disease 33: 518–525.
  • Dousa TP. (1999). Cyclic-3’,5’- nucleotide phosphodiesterases isoenzyme in cell biology and Pathophysiology. Kidney International 55(1): 29-62.
  • Dutta D, Calvani R, Bernabei R, Leeuwenburgh C, Marzetti E. (2012). Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res, 110: 1125–1138.
  • Francis SH, Turko IV and Corbin JD. (2000). Cyclic nucleotide phosphodiesterases: Relating structure and function. Progress Nucleic Acid Res. Mol. Biol 65: 1-52.
  • Gomes R, Sousa MS, Quintas A, Cordeiro C, Freire A, Pereira P, Martins A, Monteiro E, Barroso E, Ponces FA. (2005). Argpyrimidine, a methylglyoxal-derived advanced glycation end-product in familial amyloidotic polyneuropathy. Biochem. J 385 339–345.
  • Halliwell B, Gutteridge JMC. (1989). Free radicals in biology and medicine. Oxford, United Kingdom: Oxford University Press.
  • Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS. (2001). Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21(9):3017-23.
  • Houslay MD, Milligan G. (1997). Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci 22: 217-224.
  • Huang CY, Chau V, Chock PB, Wang JH and Sharma RK. (1981). Mechanism of activation of cyclic nucleotide phosphodiesterase: requirement of the binding of four Ca2+ to calmodulin for activation. Proc. Natl. Acad. Sci 78: 871– 874.
  • Jung HA, Min BS, Yokozawa T, Lee JH, Kim YS, Choi JS. (2009). Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull 32(8):1433-8.
  • Li L, Yee C and Beavo J A. (1999). CD3- and CD28- dependent induction of PDE7 required for T cell activation. Science 283: 848–851.
  • Mattson MP, Magnus T. (2004). Ageing and neuronal vulnerability. Nat Rev Neurosci 7: 278-294.
  • Nyby MD, Hori MT, Ormsby B, Gabrielian A, Tuck ML. (2003). Eicosapentaenoic acid inhibits Ca2þ mobilization and PKC activity in vascular smooth muscle cells. Am. J. Hypertens 16:708–714.
  • Polli JW and Kincaid RL. (1992). Molecular cloning of DNA encoding a calmodulin-dependent phosphodiesterase enriched in striatum. Proc. Natl. Acad. Sci 89: 11079–11083.
  • Qi L, Chen Z, Wang Y, Liu X, Liu X, Ke L, Zheng Z, Lin X, Zhou Y, Wu L, Liu L. (2017). Subcutaneous liraglutide ameliorates methylglyoxal-induced Alzheimer like tau pathology and cognitive impairment by modulating tau hyperphosphorylation and glycogen synthase kinase-3β. Am J Transl Res 15;9(2):247-260.
  • Qui JS, Qiao JT. (2001). Amyloid beta-protein fragment 31-35 forms ion channels in membrane patch¬es excised from rat hippocampal neurons. Neuroscience, 105: 845-852.
  • Radu BM, Dumitrescu DI, Mustaciosu CC, Radu M. (2012). Dual effect of methylgly-oxal on the intracellular Ca2+signaling and neurite outgrowth in mouse sensoryneurons, Cell. Mol. Neurobiol 32:1047–1057.
  • Shen C, Chen Y, Liu H et al. (2008). Hydrogen peroxide promotes Aβ production through JNK-dependent activation of-secretase. The Journal of Biological Chemistry 283(25): 17721–17730.
  • Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck CJ, Pufe T, Brandenburg LO. (2012). Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener 20:7:55.
  • Srikanth V, Westcott B, Forbes J, Phan TG, Beare R, Venn A, Pearson S, Greenaway T, Parameswaran V, Munch G. (2013). Methylglyoxal, cognitive function and cerebral atrophy in older people. J Gerontol A Biol Sci Med Sci 68: 68-73.
  • Suzuki S, Yokoyama U, Abe T, Kiyonari H, Yamashita N, Kato Y, Kurotani R, Sato M, Okumura S, Ishikawa Y. (2010). Differential roles of Epac in regulating cell death in neuronal and myocardial cells. J Biol Chem 285:24248– 24259.
  • Svoboda N, Zierler S, Kerschbaum HH. (2007). cAMP mediates ammonia-induced programmed cell death in the microglial cell line BV-2. Eur J Neurosci 25: 2285–2295.
  • Thornalley P.J. (2005). Dicarbonyl intermediates in the Maillard reaction. Annals of the New York Academy of Sciences 1043:111–117.
  • Wells JN, Baird CE, Wu YJ and Hardman JG. (1975). Cyclic nucleotide phosphodiesterase activities of pig coronary arteries. Biochim. Biophys. Acta 384:430– 442.
  • Xie B, Lin F, Peng L, Ullah K, Wu H, Qing H and Deng Y. (2014). Methylglyoxal increases dopamine level and leads to oxidative stress in SH-SY5Y cells. Acta Biochim Biophys Sin 46: 950–956.
  • Zamora ZB, Borrego A, Lopez OY. (2005). Effects of ozone oxidative preconditioning on TNF-alpha release and antioxidant prooxidant intracellular balance in mice during endotoxic shock. Mediators Inflamm 24: 16–22.
  • Zhu X, Lee HG, Raina AK, Perry G and Smith MA. (2002). The role of mitogen-activated protein kinase pathways in Alzheimer’s disease. NeuroSignals 11(5): 270–281.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Articles
Authors

Altuğ Küçükgül

Aykut Kütükoğlu This is me

Publication Date May 29, 2019
Submission Date October 5, 2018
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Küçükgül, A., & Kütükoğlu, A. (2019). Gıda Tatlandırıcıları Glikasyon Ürünleri Uyarımlı Amiloid Oluşumu Üzerine Fosfodiesteraz 1B Geni Ekspresyon Seviyelerinin Araştırılması. Avrasya Sağlık Bilimleri Dergisi, 2(2), 80-87.
AMA Küçükgül A, Kütükoğlu A. Gıda Tatlandırıcıları Glikasyon Ürünleri Uyarımlı Amiloid Oluşumu Üzerine Fosfodiesteraz 1B Geni Ekspresyon Seviyelerinin Araştırılması. EurasianJHS. May 2019;2(2):80-87.
Chicago Küçükgül, Altuğ, and Aykut Kütükoğlu. “Gıda Tatlandırıcıları Glikasyon Ürünleri Uyarımlı Amiloid Oluşumu Üzerine Fosfodiesteraz 1B Geni Ekspresyon Seviyelerinin Araştırılması”. Avrasya Sağlık Bilimleri Dergisi 2, no. 2 (May 2019): 80-87.
EndNote Küçükgül A, Kütükoğlu A (May 1, 2019) Gıda Tatlandırıcıları Glikasyon Ürünleri Uyarımlı Amiloid Oluşumu Üzerine Fosfodiesteraz 1B Geni Ekspresyon Seviyelerinin Araştırılması. Avrasya Sağlık Bilimleri Dergisi 2 2 80–87.
IEEE A. Küçükgül and A. Kütükoğlu, “Gıda Tatlandırıcıları Glikasyon Ürünleri Uyarımlı Amiloid Oluşumu Üzerine Fosfodiesteraz 1B Geni Ekspresyon Seviyelerinin Araştırılması”, EurasianJHS, vol. 2, no. 2, pp. 80–87, 2019.
ISNAD Küçükgül, Altuğ - Kütükoğlu, Aykut. “Gıda Tatlandırıcıları Glikasyon Ürünleri Uyarımlı Amiloid Oluşumu Üzerine Fosfodiesteraz 1B Geni Ekspresyon Seviyelerinin Araştırılması”. Avrasya Sağlık Bilimleri Dergisi 2/2 (May 2019), 80-87.
JAMA Küçükgül A, Kütükoğlu A. Gıda Tatlandırıcıları Glikasyon Ürünleri Uyarımlı Amiloid Oluşumu Üzerine Fosfodiesteraz 1B Geni Ekspresyon Seviyelerinin Araştırılması. EurasianJHS. 2019;2:80–87.
MLA Küçükgül, Altuğ and Aykut Kütükoğlu. “Gıda Tatlandırıcıları Glikasyon Ürünleri Uyarımlı Amiloid Oluşumu Üzerine Fosfodiesteraz 1B Geni Ekspresyon Seviyelerinin Araştırılması”. Avrasya Sağlık Bilimleri Dergisi, vol. 2, no. 2, 2019, pp. 80-87.
Vancouver Küçükgül A, Kütükoğlu A. Gıda Tatlandırıcıları Glikasyon Ürünleri Uyarımlı Amiloid Oluşumu Üzerine Fosfodiesteraz 1B Geni Ekspresyon Seviyelerinin Araştırılması. EurasianJHS. 2019;2(2):80-7.