Research Article
BibTex RIS Cite

In Vitro Evaluation of Selenium Against Some Plant Pathogenic Fungi

Year 2024, , 99 - 110, 05.07.2024
https://doi.org/10.29278/azd.1452105

Abstract

Objective: Selenium (Se) is garnering interest as a promising environmentally friendly element for controlling fungal pathogens in agricultural production. This study evaluated the impact of Se treatments, comprising sodium selenite (selenite) and sodium selenate (selenate) forms, on the growth of 10 plant pathogenic fungi.
Materials and Methods: The impact of Se treatments on the mycelial growth and sporulation of fungi was assessed in in vitro conditions. Probit analysis was used to determine the concentrations of salts that induced a 50% reduction (EC50) in both mycelial growth and sporulation of fungi.
Results: At the highest concentration (120 ppm), selenite demonstrated inhibitory effects on mycelial growth across various species, with a reduction in growth ranging from 6.82% to 62.46%. In contrast, selenate exhibited a broader spectrum of inhibition, affecting mycelial growth from 0% to 87.14%. Across different concentrations, Fusarium pseudograminearum displayed the highest sensitivity to selenite (EC50<24 ppm), followed by Bipolaris sorokiniana and Verticillium dahliae. Similarly, Colletotrichum coccodes exhibited the highest sensitivity to selenate treatment (EC50<24 ppm), followed by B. sorokiniana, Botrytis cinerea, Sclerotinia sclerotiorum, and V. dahliae. Both salts effectively inhibited sporulation across fungal species, with no significant difference observed. Colletotrichum coccodes, F. pseudograminearum, B. cinerea, F. culmorum, V. dahliae, and B. sorokiniana were significantly inhibited by selenite, while F. oxysporum exhibited lower inhibition. Similarly, these species, along with V. dahliae and F. oxysporum, were significantly inhibited by selenate, with slight differences between their inhibition percentages. EC50 values below 24 ppm were observed for C. coccodes, B. cinerea, F. culmorum, B. sorokiniana, and F. oxysporum, indicating potent inhibition of sporulation by both salts. Fusarium pseudograminearum required slightly higher concentrations for 50% inhibition. Verticillium dahliae showed higher sensitivity to selenate than selenite, with EC50 values of 33.16 ppm and below 24 ppm, respectively.
Conclusion: The findings of this study contribute to our understanding of Se's antifungal potential across diverse plant pathogenic fungal species in sustainable agriculture. Further research is warranted to elucidate its mechanisms and optimize treatment protocols for disease management.

References

  • Agar, G., Alpsoy, L., Bozari, S., Erturk, F. A., & Yildirim, N. (2013). Determination of protective role of selenium against aflatoxin B1-induced DNA damage. Toxicology and Industrial Health, 29, 396−403. https://doi.org/10.1177/0748233711434956
  • Bhatia, P., Aureli, F., D’Amato, M., Prakash, R., Cameotra, S. S., Nagaraja, T. P., & Cubadda, F. (2013). Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chemistry, 140, 225−230. https://doi.org/10.1016/j.foodchem.2013.02.054
  • Chen, X., Zhang, Z., Gu, M., Li, H., Shohag, M., Shen, F., Wang, X., & Wei, Y. (2020). Combined use of arbuscular mycorrhizal fungus and selenium fertilizer shapes microbial community structure and enhances organic selenium accumulation in rice grain. Science of the Total Environment, 748, 141166. https://doi.org/10.1016/j.scitotenv.2020.141166
  • Cheng, Q., Hu, C., Jia, W., Cai, M., Zhao, Y., Tang, Y., Yang, D., Zhou, Y., Sun, X., & Zhao, X. (2019). Selenium reduces the pathogenicity of Sclerotinia sclerotiorum by inhibiting sclerotial formation and germination. Ecotoxicology and Environmental Safety, 183, 109503. https://doi.org/10.1016/j.ecoenv.2019.109503
  • Cheng, Q., Jia, W., Hu, C., Shi, G., Yang, D., Cai, M., Zhan, T., Tang, Y., Zhou, Y., Sun, X., & Zhao, X. (2020). Enhancement and improvement of selenium in soil to the resistance of rape stem against Sclerotinia sclerotiorum and the inhibition of dissolved organic matter derived from rape straw on mycelium. Environmental Pollution, 265, 114827. https://doi.org/10.1016/j.envpol.2020.114827
  • Companioni, B., Medrano, J., Torres, J. A., Flores, A., Rodríguez, E., & Benavides, A. (2012). Protective action of sodium selenite against Fusarium wilt in tomato: Total protein contents, levels of phenolic compounds and changes in antioxidant potential. In II International Symposium on Soilless Culture and Hydroponics, 947, 321−327. https://doi.org/10.17660/ActaHortic.2012.947.41
  • Djanaguiraman, M., Devi, D., Shanker, A., Sheeba, J., & Bangarusamy, U. (2005). Selenium–an antioxidative protectant in soybean during senescence. Plant and Soil, 272, 77−86. https://doi.org/10.1007/s11104-004-4039-1
  • El-Ramady, H., Abdalla, N., Taha, H., Alshaal, T., El-Henawy, A., Faizy, S., Shams, M., Youssef, S., Shalaby, T., Bayoumi, Y., Elhawat, N., Shehata, S., Sztrik, A., Prokisch, J., Fári, M., Domokos-Szabolcsy, É., Pilon-Smits, E., Selmar, D., Haneklaus, S., & Schnug, E. (2016). Selenium and nano-selenium in plant nutrition. Environmental Chemistry Letters, 14, 123−147. https://doi.org/10.1007/s10311-015-0535-1
  • Espinosa-Ortiz, E. J., Gonzalez-Gil, G., Saikaly, P. E., van Hullebusch, E. D., & Lens, P. N. (2015). Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 99(5), 2405−2418. https://doi.org/10.1007/s00253-014-6127-3
  • Filek, M., Łabanowska, M., Kurdziel, M., & Sieprawska, A. (2017). Electron paramagnetic resonance (EPR) spectroscopy in studies of the protective effects of 24-epibrasinoide and selenium against zearalenone-stimulation of the oxidative stress in germinating grains of wheat. Toxins, 9, 178. https://doi.org/10.3390/toxins9060178
  • Golubkina, N., Amagova, Z., Matsadze, V., Zamana, S., Tallarita, A., & Caruso, G. (2020). Effects of arbuscular mycorrhizal fungi on yield, biochemical characteristics, and elemental composition of garlic and onion under selenium supply. Plants, 9(1), 84. https://doi.org/10.3390/plants9010084
  • Hanson, B., Garifullina, G. F., Lindblom, S. D., Wangeline, A., Ackley, A., Kramer, K., Norton, A. P., Lawrence, C. B., & Pilon-Smits, E. A. H. (2003). Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytologist, 159, 461−469. https://doi.org/10.1046/j.1469-8137.2003.00786.x
  • Hasanuzzaman, M., Hossain, M., & Fujita, M. (2011). Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-ınduced damage in rapeseed seedlings. Biological Trace Element Research, 143, 1704−1721. https://doi.org/10.1007/s12011-011-8958-4.
  • Jia, W., Hu, C., Ming, J., Zhao, Y., Xin, J., Sun, X., & Zhao, X. (2018). Action of selenium against Sclerotinia sclerotiorum: Damaging membrane system and interfering with metabolism. Pesticide Biochemistry and Physiology, 150, 10−16. https://doi.org/10.1016/j.pestbp.2018.06.003
  • Kong, L., Wang, M., & Bi, D. (2005). Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regulation, 45, 155−163. https://doi.org/10.1007/s10725-005-1893-7
  • Kornaś, A., Filek, M., Sieprawska, A., Bednarska-Kozakiewicz, E., Gawrońska, K., & Miszalski, Z. (2019). Foliar application of selenium for protection against the first stages of mycotoxin infection of crop plant leaves. Journal of the Science of Food and Agriculture, 99, 482−485. https://doi.org/10.1002/jsfa.9145
  • Li, Q., Xian, L., Yuan, L., Lin, Z., Chen, X., Wang, J., & Li, T. (2023). The use of selenium for controlling plant fungal diseases and insect pests. Frontiers in Plant Science, 14, 1102594. https://doi.org/10.3389/fpls.2023.1102594
  • Lindblom, S., Fakra, S., Landon, J., Schulz, P., Tracy, B., & Pilon-Smits, E. (2014). Inoculation of selenium hyperaccumulator Stanleya pinnata and related non-accumulator Stanleya elata with hyperaccumulator rhizosphere fungi--investigation of effects on Se accumulation and speciation. Physiologia Plantarum, 150(1), 107−18. https://doi.org/10.1111/ppl.12094
  • Liu, K., Cai, M., Hu, C., Sun, X., Cheng, Q., Jia, W., Yang, T., Nie, M., & Zhao, X. (2019). Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles. Environmental Pollution, 254, 113051. https://doi.org/10.1016/j.envpol.2019.113051
  • Liu, X., Zhao, Z., Duan, B., Hu, C., Zhao, X., & Guo, Z. (2015). Effect of applied sulphur on the uptake by wheat of selenium applied as selenite. Plant Soil, 386, 35−45. https://doi.org/10.1007/s11104-014-2229-z
  • Mao, X., Hua, C., Yang, L., Zhang, Y., Sun, Z., Li, L., & Li, T. (2020). The effects of selenium on wheat fusarium head blight and DON accumulation were selenium compound-dependent. Toxins, 12, 573. https://doi.org/10.3390/toxins12090573
  • Mecteau, M. R., Joseph, A. R. U. L., & Tweddell, R. J. (2002). Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot. Mycological Research, 106(6), 688−696. https://doi.org/10.1017/S0953756202005944
  • Mehdawi, A., & Pilon-Smits, E. (2012). Ecological aspects of plant selenium hyperaccumulation. Plant Biology, 14(1), 1−10. https://doi.org/10.1111/j.1438-8677.2011.00535.x.
  • Ramadan, S. E., Razak, A.A., Yousseff, Y.A., & Sedky, N.M. (1988). Selenium metabolism in a strain of Fusarium. Biological Trace Element Research, 18, 161−170. https://doi.org/10.1007/BF02917500
  • Razak, A. A., El-Tantawy, H., El-Sheikh, H. H., & Gharieb, M.M. (1991). Influence of selenium on the efficiency of fungicide action against certain fungi. Biological Trace Element Research, 28, 47−56. https://doi.org/10.1007/BF02990462
  • Sarma, B. K., Basha, S. A., Singh, D. P., & Singh, U. P. (2007). Use of non-conventional chemicals as an alternative approach to protect chickpea (Cicer arietinum) from Sclerotinia stem rot. Crop Protection, 26(7), 1042−1048. https://doi.org/10.1016/j.cropro.2006.09.015
  • Shapiro, S. S., & Francia, R. S. (1972). An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67(337), 215−216. https://doi.org/10.1080/01621459.1972.10481232
  • Spallholz, J. E. (1997). Free radical generation by selenium compounds and their prooxidant toxicity. Biomedical and Environmental Sciences: BES, 10(2-3), 260−270.
  • Troni, E., Beccari, G., D’Amato, R., Tini, F., Baldo, D., Senatore, M. T., Beone, G. M., Fontanella, M.C., Prodi, A., Businelli, D., & Covarelli, L. (2021). In vitro evaluation of the inhibitory activity of different selenium chemical forms on the growth of a Fusarium proliferatum strain isolated from rice seedlings. Plants, 10(8),1725. https://doi.org/10.3390/plants10081725
  • Turakainen, M., Hartikainen, H., & Seppänen, M. (2004). Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. Journal of Agricultural and Food Chemistry, 52(17), 5378−5382. https://doi.org/10.1021/JF040077X.
  • Türkkan, M., & Erper, İ. (2015). Inhibitory influence of organic and inorganic sodium salts and synthetic fungicides against bean root rot pathogens. Gesunde Pflanzen, 67(2), 83−94. https://doi.org/94. 10.1007/s10343-015-0339-z
  • Türkkan, M. (2013). Antifungal effect of various salts against Fusarium oxysporum f. sp. cepae, the causal agent of Fusarium basal rot of onion. Journal of Agricultural Sciences, 19(3), 178−187. https://doi.org/10.1501/Tarimbil_0000001243
  • Wu, Z. L., Yin, X. B., Lin, Z. Q., Bañuelos, G. S., Yuan, L. X., Liu, Y., et al. (2014). Inhibitory effect of selenium against Penicillium expansum and its possible mechanisms of action. Current Microbiology, 69, 192−201. https://doi.org/10.1007/s00284-014-0573-0
  • Wu, Z., Yin, X., Bañuelos, G., Lin, Z., Zhu, Z., Liu, Y., Yuan, L., & Li, M. (2016). Effect of Selenium on control of postharvest gray mold of tomato fruit and the possible mechanisms involved. Frontiers in Microbiology, 6, 1441. https://doi.org/10.3389/fmicb.2015.01441
  • Xu, J., Jia, W., Hu, C., Nie, M., Ming, J., Cheng, Q., Cai, M., Sun, X., Li, X., Zheng, X., Wang, J., & Zhao, X. (2019). Selenium as a potential fungicide could protect oilseed rape leaves from Sclerotinia sclerotiorum infection. Environmental Pollution, 257, 113495. https://doi.org/10.1016/j.envpol.2019.113495
  • Zang, H., Ma, J., Wu, Z., Yuan, L., Lin, Z., Zhu, R., Bañuelos, G., Reiter, R., Li, M., & Yin, X. (2022). Synergistic effect of melatonin and selenium ımproves resistance to postharvest gray mold disease of tomato fruit. Frontiers in Plant Science, 13, 903936. https://doi.org/10.3389/fpls.2022.903936
  • Zhu, Z., Chen, Y. L., Shi, G. Q., & Zhang, X. J. (2017). Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chemistry, 219, 179−184. https://doi.org/10.1016/j.foodchem.2016.09.138

Selenyumun Bazı Bitki Patojeni Funguslara Karşı In Vitro Değerlendirmesi

Year 2024, , 99 - 110, 05.07.2024
https://doi.org/10.29278/azd.1452105

Abstract

Amaç: Selenyum (Se), tarımsal alanlarda fungal patojenlerini kontrol etmek için umut vaat eden çevre dostu bir element olarak ilgi çekmektedir. Bu çalışmada, sodyum selenit (selenit) ve sodyum selenat (selenat) formlarını içeren Se uygulamalarının 10 farklı bitki patojeni fungus türünün büyümesi üzerindeki etkisi değerlendirilmiştir.
Materyal ve Yöntem: Selenyum uygulamalarının fungusların miselyal gelişmesi ve spor oluşumu üzerindeki etkisi in vitro koşullarda değerlendirilmiştir. Probit analizi, fungusların hem miselyal gelişme hem de spor oluşumunda %50 azalmaya (EC50) yol açan tuz konsantrasyonlarını belirlemek için kullanılmıştır.
Araştırma Bulguları: En yüksek konsantrasyonda (120 ppm), selenit tüm türlerin miselyal gelişmesini %6.82 ile %62.46 arasında engellemiştir. Buna karşın, selenat daha geniş bir engelleme spektrumu göstermiş ve miselyum büyümesini %0 ile %87.14 arasında etkilemiştir. Farklı konsantrasyonlarda, Fusarium pseudograminearum selenit karşısında (EC50<24 ppm) en yüksek duyarlılığı gösterirken onu Bipolaris sorokiniana ve Verticillium dahliae izlemiştir. Benzer şekilde, Colletotrichum coccodes selenat uygulamasına karşı (EC50<24 ppm) en yüksek duyarlılığı gösterirken, onu B. sorokiniana, Botrytis cinerea, Sclerotinia sclerotiorum ve V. dahliae takip etmiştir. Her iki tuz da anlamlı bir farklılık gözlenmeksizin fungal türleri üzerinde spor oluşumunu etkili bir şekilde inhibe etmiştir. Colletotrichum coccodes, F. pseudograminearum, B. cinerea, F. culmorum, V. dahliae ve B. sorokiniana selenit tarafından anlamlı şekilde inhibe edilmiştir fakat F. oxysporum’a karşı daha düşük bir inhibisyon gözlenmiştir. Benzer şekilde, engelleme yüzdeleri arasında küçük farklar bulunmakla birlikte bu türler, V. dahliae ve F. oxysporum ile birlikte, selenat tarafından anlamlı şekilde inhibe edilmiştir. Colletotrichum coccodes, B. cinerea, F. culmorum, B. sorokiniana ve F. oxysporum için 24 ppm'nin altındaki EC50 değerleri, her iki tuzun da spor oluşumunu etkin bir şekilde inhibe ettiğini göstermiştir. Fusarium pseudograminearum’un %50 inhibisyonu için daha yüksek konsantrasyonların gerektiği anlaşılmıştır. Verticillium dahliae, selenit karşısında 33.16 ppm ve selenat karşısında 24 ppm'nin altında olan EC50 değerleri ile selenata karşı daha yüksek duyarlılık göstermiştir.
Sonuç: Bu çalışmanın bulguları, Se'nin sürdürülebilir tarımda çeşitli bitki patojen fungus türleri üzerindeki antifungal potansiyeline ilişkin anlayışımıza katkıda bulunmaktadır. Hastalık yönetimi için elementin mekanizmalarını anlamak ve uygulama protokollerini optimize etmek için daha fazla araştırmaya ihtiyaç vardır.

References

  • Agar, G., Alpsoy, L., Bozari, S., Erturk, F. A., & Yildirim, N. (2013). Determination of protective role of selenium against aflatoxin B1-induced DNA damage. Toxicology and Industrial Health, 29, 396−403. https://doi.org/10.1177/0748233711434956
  • Bhatia, P., Aureli, F., D’Amato, M., Prakash, R., Cameotra, S. S., Nagaraja, T. P., & Cubadda, F. (2013). Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chemistry, 140, 225−230. https://doi.org/10.1016/j.foodchem.2013.02.054
  • Chen, X., Zhang, Z., Gu, M., Li, H., Shohag, M., Shen, F., Wang, X., & Wei, Y. (2020). Combined use of arbuscular mycorrhizal fungus and selenium fertilizer shapes microbial community structure and enhances organic selenium accumulation in rice grain. Science of the Total Environment, 748, 141166. https://doi.org/10.1016/j.scitotenv.2020.141166
  • Cheng, Q., Hu, C., Jia, W., Cai, M., Zhao, Y., Tang, Y., Yang, D., Zhou, Y., Sun, X., & Zhao, X. (2019). Selenium reduces the pathogenicity of Sclerotinia sclerotiorum by inhibiting sclerotial formation and germination. Ecotoxicology and Environmental Safety, 183, 109503. https://doi.org/10.1016/j.ecoenv.2019.109503
  • Cheng, Q., Jia, W., Hu, C., Shi, G., Yang, D., Cai, M., Zhan, T., Tang, Y., Zhou, Y., Sun, X., & Zhao, X. (2020). Enhancement and improvement of selenium in soil to the resistance of rape stem against Sclerotinia sclerotiorum and the inhibition of dissolved organic matter derived from rape straw on mycelium. Environmental Pollution, 265, 114827. https://doi.org/10.1016/j.envpol.2020.114827
  • Companioni, B., Medrano, J., Torres, J. A., Flores, A., Rodríguez, E., & Benavides, A. (2012). Protective action of sodium selenite against Fusarium wilt in tomato: Total protein contents, levels of phenolic compounds and changes in antioxidant potential. In II International Symposium on Soilless Culture and Hydroponics, 947, 321−327. https://doi.org/10.17660/ActaHortic.2012.947.41
  • Djanaguiraman, M., Devi, D., Shanker, A., Sheeba, J., & Bangarusamy, U. (2005). Selenium–an antioxidative protectant in soybean during senescence. Plant and Soil, 272, 77−86. https://doi.org/10.1007/s11104-004-4039-1
  • El-Ramady, H., Abdalla, N., Taha, H., Alshaal, T., El-Henawy, A., Faizy, S., Shams, M., Youssef, S., Shalaby, T., Bayoumi, Y., Elhawat, N., Shehata, S., Sztrik, A., Prokisch, J., Fári, M., Domokos-Szabolcsy, É., Pilon-Smits, E., Selmar, D., Haneklaus, S., & Schnug, E. (2016). Selenium and nano-selenium in plant nutrition. Environmental Chemistry Letters, 14, 123−147. https://doi.org/10.1007/s10311-015-0535-1
  • Espinosa-Ortiz, E. J., Gonzalez-Gil, G., Saikaly, P. E., van Hullebusch, E. D., & Lens, P. N. (2015). Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 99(5), 2405−2418. https://doi.org/10.1007/s00253-014-6127-3
  • Filek, M., Łabanowska, M., Kurdziel, M., & Sieprawska, A. (2017). Electron paramagnetic resonance (EPR) spectroscopy in studies of the protective effects of 24-epibrasinoide and selenium against zearalenone-stimulation of the oxidative stress in germinating grains of wheat. Toxins, 9, 178. https://doi.org/10.3390/toxins9060178
  • Golubkina, N., Amagova, Z., Matsadze, V., Zamana, S., Tallarita, A., & Caruso, G. (2020). Effects of arbuscular mycorrhizal fungi on yield, biochemical characteristics, and elemental composition of garlic and onion under selenium supply. Plants, 9(1), 84. https://doi.org/10.3390/plants9010084
  • Hanson, B., Garifullina, G. F., Lindblom, S. D., Wangeline, A., Ackley, A., Kramer, K., Norton, A. P., Lawrence, C. B., & Pilon-Smits, E. A. H. (2003). Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytologist, 159, 461−469. https://doi.org/10.1046/j.1469-8137.2003.00786.x
  • Hasanuzzaman, M., Hossain, M., & Fujita, M. (2011). Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-ınduced damage in rapeseed seedlings. Biological Trace Element Research, 143, 1704−1721. https://doi.org/10.1007/s12011-011-8958-4.
  • Jia, W., Hu, C., Ming, J., Zhao, Y., Xin, J., Sun, X., & Zhao, X. (2018). Action of selenium against Sclerotinia sclerotiorum: Damaging membrane system and interfering with metabolism. Pesticide Biochemistry and Physiology, 150, 10−16. https://doi.org/10.1016/j.pestbp.2018.06.003
  • Kong, L., Wang, M., & Bi, D. (2005). Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regulation, 45, 155−163. https://doi.org/10.1007/s10725-005-1893-7
  • Kornaś, A., Filek, M., Sieprawska, A., Bednarska-Kozakiewicz, E., Gawrońska, K., & Miszalski, Z. (2019). Foliar application of selenium for protection against the first stages of mycotoxin infection of crop plant leaves. Journal of the Science of Food and Agriculture, 99, 482−485. https://doi.org/10.1002/jsfa.9145
  • Li, Q., Xian, L., Yuan, L., Lin, Z., Chen, X., Wang, J., & Li, T. (2023). The use of selenium for controlling plant fungal diseases and insect pests. Frontiers in Plant Science, 14, 1102594. https://doi.org/10.3389/fpls.2023.1102594
  • Lindblom, S., Fakra, S., Landon, J., Schulz, P., Tracy, B., & Pilon-Smits, E. (2014). Inoculation of selenium hyperaccumulator Stanleya pinnata and related non-accumulator Stanleya elata with hyperaccumulator rhizosphere fungi--investigation of effects on Se accumulation and speciation. Physiologia Plantarum, 150(1), 107−18. https://doi.org/10.1111/ppl.12094
  • Liu, K., Cai, M., Hu, C., Sun, X., Cheng, Q., Jia, W., Yang, T., Nie, M., & Zhao, X. (2019). Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles. Environmental Pollution, 254, 113051. https://doi.org/10.1016/j.envpol.2019.113051
  • Liu, X., Zhao, Z., Duan, B., Hu, C., Zhao, X., & Guo, Z. (2015). Effect of applied sulphur on the uptake by wheat of selenium applied as selenite. Plant Soil, 386, 35−45. https://doi.org/10.1007/s11104-014-2229-z
  • Mao, X., Hua, C., Yang, L., Zhang, Y., Sun, Z., Li, L., & Li, T. (2020). The effects of selenium on wheat fusarium head blight and DON accumulation were selenium compound-dependent. Toxins, 12, 573. https://doi.org/10.3390/toxins12090573
  • Mecteau, M. R., Joseph, A. R. U. L., & Tweddell, R. J. (2002). Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot. Mycological Research, 106(6), 688−696. https://doi.org/10.1017/S0953756202005944
  • Mehdawi, A., & Pilon-Smits, E. (2012). Ecological aspects of plant selenium hyperaccumulation. Plant Biology, 14(1), 1−10. https://doi.org/10.1111/j.1438-8677.2011.00535.x.
  • Ramadan, S. E., Razak, A.A., Yousseff, Y.A., & Sedky, N.M. (1988). Selenium metabolism in a strain of Fusarium. Biological Trace Element Research, 18, 161−170. https://doi.org/10.1007/BF02917500
  • Razak, A. A., El-Tantawy, H., El-Sheikh, H. H., & Gharieb, M.M. (1991). Influence of selenium on the efficiency of fungicide action against certain fungi. Biological Trace Element Research, 28, 47−56. https://doi.org/10.1007/BF02990462
  • Sarma, B. K., Basha, S. A., Singh, D. P., & Singh, U. P. (2007). Use of non-conventional chemicals as an alternative approach to protect chickpea (Cicer arietinum) from Sclerotinia stem rot. Crop Protection, 26(7), 1042−1048. https://doi.org/10.1016/j.cropro.2006.09.015
  • Shapiro, S. S., & Francia, R. S. (1972). An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67(337), 215−216. https://doi.org/10.1080/01621459.1972.10481232
  • Spallholz, J. E. (1997). Free radical generation by selenium compounds and their prooxidant toxicity. Biomedical and Environmental Sciences: BES, 10(2-3), 260−270.
  • Troni, E., Beccari, G., D’Amato, R., Tini, F., Baldo, D., Senatore, M. T., Beone, G. M., Fontanella, M.C., Prodi, A., Businelli, D., & Covarelli, L. (2021). In vitro evaluation of the inhibitory activity of different selenium chemical forms on the growth of a Fusarium proliferatum strain isolated from rice seedlings. Plants, 10(8),1725. https://doi.org/10.3390/plants10081725
  • Turakainen, M., Hartikainen, H., & Seppänen, M. (2004). Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. Journal of Agricultural and Food Chemistry, 52(17), 5378−5382. https://doi.org/10.1021/JF040077X.
  • Türkkan, M., & Erper, İ. (2015). Inhibitory influence of organic and inorganic sodium salts and synthetic fungicides against bean root rot pathogens. Gesunde Pflanzen, 67(2), 83−94. https://doi.org/94. 10.1007/s10343-015-0339-z
  • Türkkan, M. (2013). Antifungal effect of various salts against Fusarium oxysporum f. sp. cepae, the causal agent of Fusarium basal rot of onion. Journal of Agricultural Sciences, 19(3), 178−187. https://doi.org/10.1501/Tarimbil_0000001243
  • Wu, Z. L., Yin, X. B., Lin, Z. Q., Bañuelos, G. S., Yuan, L. X., Liu, Y., et al. (2014). Inhibitory effect of selenium against Penicillium expansum and its possible mechanisms of action. Current Microbiology, 69, 192−201. https://doi.org/10.1007/s00284-014-0573-0
  • Wu, Z., Yin, X., Bañuelos, G., Lin, Z., Zhu, Z., Liu, Y., Yuan, L., & Li, M. (2016). Effect of Selenium on control of postharvest gray mold of tomato fruit and the possible mechanisms involved. Frontiers in Microbiology, 6, 1441. https://doi.org/10.3389/fmicb.2015.01441
  • Xu, J., Jia, W., Hu, C., Nie, M., Ming, J., Cheng, Q., Cai, M., Sun, X., Li, X., Zheng, X., Wang, J., & Zhao, X. (2019). Selenium as a potential fungicide could protect oilseed rape leaves from Sclerotinia sclerotiorum infection. Environmental Pollution, 257, 113495. https://doi.org/10.1016/j.envpol.2019.113495
  • Zang, H., Ma, J., Wu, Z., Yuan, L., Lin, Z., Zhu, R., Bañuelos, G., Reiter, R., Li, M., & Yin, X. (2022). Synergistic effect of melatonin and selenium ımproves resistance to postharvest gray mold disease of tomato fruit. Frontiers in Plant Science, 13, 903936. https://doi.org/10.3389/fpls.2022.903936
  • Zhu, Z., Chen, Y. L., Shi, G. Q., & Zhang, X. J. (2017). Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chemistry, 219, 179−184. https://doi.org/10.1016/j.foodchem.2016.09.138
There are 37 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section Makaleler
Authors

Göksel Özer 0000-0002-3385-2520

Muharrem Türkkan 0000-0001-7779-9365

Ferit Sönmez 0000-0003-1437-4081

Hüseyin Kabakcı 0000-0002-9671-9858

Mehtap Alkan 0000-0002-7923-8892

Sibel Derviş 0000-0002-4917-3813

Publication Date July 5, 2024
Submission Date March 15, 2024
Acceptance Date May 24, 2024
Published in Issue Year 2024

Cite

APA Özer, G., Türkkan, M., Sönmez, F., Kabakcı, H., et al. (2024). In Vitro Evaluation of Selenium Against Some Plant Pathogenic Fungi. Akademik Ziraat Dergisi, 13(1), 99-110. https://doi.org/10.29278/azd.1452105