Bal Arılarının (Apis mellifera) Şeker Tüketimi, Sağkalım Oranı ve Nosema ceranae Duyarlılığı Üzerine Coumaphos ve Lityum Klorür Maruziyetinin Etkileri
Year 2024,
, 201 - 208, 05.07.2024
Samet Okuyan
,
Salim Aktürk
,
Yeliz Kaşko Arıcı
,
Gökhan Akdeniz
,
Serhat Solmaz
,
Süleyman Alparslan
,
Saffet Sansar
,
Aziz Gül
,
İrfan Kandemir
Abstract
Amaç: Bu çalışmanın amacı, Varrao kontrolünde kullanılan coumaphos ve lityum klorür maruziyetinin bal arısı işçilerinin (Apis mellifera) yaşam süresi, sukroz tüketimi ve Nosema ceranae duyarlılığı üzerine etkilerini değerlendirmektir.
Materyal ve Yöntem: Bu araştırmada, üç Kafkas bal arısı kolonisinden alınan iki çerçeve kapalı yavrulu çıta, %80 bağıl nem ve 35°C sıcaklıkta inkübe edildi. Petek gözünden çıkan işçi arılar deneysel kafeslere her bir kafeste 50 arı olacak şekilde dolduruldu. Ad libitum şeker şurubu ve polen ile beslendi. Arılar kontrol, coumaphos'a maruz kalanlar, lityum klorüre maruz kalanlar, ve acetona (coumaphos'un çözücüsü) maruz kalanlar; bu dört gruba ek olarak, aynı grupların N. ceranae sporları ile enfekte edilmiş olanları olmak üzere sekiz gruba ayrıldı. Şeker şurubu tüketimi ve ölüm oranları günlük olarak kaydedildi, N. ceranae spor sayımları deneme sonunda yapıldı.
Araştırma Bulguları: Gruplar arasındaki ölüm oranları ve sukroz solüsyonu tüketimi arası farklılıkların istatistiksel olarak anlamlı olmadığı (p>0.05) belirlenmiştir. Nosema spor sayımı bakımından ise; lityum klorür, lityum klorür Nosema ve coumaphos grubu istatistiki olarak diğer gruplardan önemli ölçüde daha az Nosema sporuna sahip olduğu belirlenmiştir (p<0.05).
Sonuç: Lityum klorür maruziyeti, Nosema ceranae ile enfekte edilmiş arı gruplarında, spor sayılarını önemli ölçüde azaltmıştır (p<0.05). Sukroz tüketimi açısından, gruplar arasında istatistiksel olarak anlamlı bir fark bulunmamıştır. Bu durum uygulamanın arıların beslenme alışkanlıkları üzerinde önemli bir etkisi olmadığını göstermektedir. Sonuç olarak, lityum klorürün varroa akarlarının kontrolünde kullanımının ötesinde, N. ceranae enfeksiyonlarına karşı potansiyel faydaları üzerine araştırmalar yapılmalıdır.
References
- Aizen, M. A., & Harder, L. D. (2009). The Global Stock of Domesticated Honey Bees Is Growing Slower Than Agricultural Demand for Pollination. Current Biology, 19(11), 915–918. https://doi.org/10.1016/j.cub.2009.03.071
- Alaux, C., Brunet, J. L., Dussaubat, C., Mondet, F., Tchamitchan, S., Cousin, M., Brillard, J., Baldy, A., Belzunces, L. P., & le Conte, Y. (2010). Interactions betweenNosemamicrospores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology, 12(3), 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x
- Boncristiani, H., Underwood, R., Schwarz, R., Evans, J. D., Pettis, J., & vanEngelsdorp, D. (2012). Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. Journal of Insect Physiology, 58(5), 613–620. https://doi.org/10.1016/j.jinsphys.2011.12.011
- Cornman, R. S., Tarpy, D. R., Chen, Y., Jeffreys, L., Lopez, D., Pettis, J. S., vanEngelsdorp, D., & Evans, J. D. (2012). Pathogen Webs in Collapsing Honey Bee Colonies. PLoS ONE, 7(8), e43562. https://doi.org/10.1371/journal.pone.0043562
- Elzen,P. J.and Westervelt,D., American Bee Journal, Detection of coumaphos resistance in Varroa destructor in Florida 20023071108, USA, 142, (4), Hamilton, American Bee Journal, (291–292).
- Foley, K., Fazio, G., Jensen, A. B., & Hughes, W. O. (2012). Nutritional limitation and resistance to opportunistic Aspergillus parasites in honey bee larvae. Journal of Invertebrate Pathology, 111(1), 68–73. https://doi.org/10.1016/j.jip.2012.06.006
- Gashout, H. (2017). Effect of sub-lethal doses of synthetic and natural acaricides on honey bee (Apis mellifera L.) health, memory, behaviour and associated gene expression. Environmental Sciences.
- Higes, M., Martín, R., & Meana, A. (2006). Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of Invertebrate Pathology, 92(2), 93–95. https://doi.org/10.1016/j.jip.2006.02.005
- Higes, M., García-Palencia, P., Martín-Hernández, R., & Meana, A. (2007). Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). Journal of Invertebrate Pathology, 94(3), 211–217. https://doi.org/10.1016/j.jip.2006.11.001
- Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2006). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721
- Malone, L. A., & Gatehouse (Née Edmonds), H. S. (1998). Effects of Nosema apis Infection on Honey Bee (Apis mellifera) Digestive Proteolytic Enzyme Activity. Journal of Invertebrate Pathology, 71(2), 169–174. https://doi.org/10.1006/jipa.1997.4715
- Mayack, C., & Naug, D. (2009). Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. Journal of Invertebrate Pathology, 100(3), 185–188. https://doi.org/10.1016/j.jip.2008.12.001
- National Research Council, Studies, D. O. E. A. L., Resources, B. O. A. A. N., Sciences, B. O. L., & America, C. O. T. S. O. P. I. N. (2007). Status of Pollinators in North America (Illustrated ed.). National Academies Press.
- Pettis, J. S., vanEngelsdorp, D., Johnson, J., & Dively, G. (2012). Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften, 99(2), 153–158. https://doi.org/10.1007/s00114-011-0881-1
- Rosenkranz, P., Aumeier, P., & Ziegelmann, B. (2010). Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, S96–S119. https://doi.org/10.1016/j.jip.2009.07.016
- Utuk, A. E., Piskin, F. C., Girisgin, A. O., Selcuk, O., & Aydin, L. (2015). Microscopic and molecular detection of nosema spp. in honeybees of Turkey. Apidologie, 47(2), 267–271. https://doi.org/10.1007/s13592-015-0394-6
- vanEngelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D. R., & Pettis, J. S. (2009). Colony Collapse Disorder: A Descriptive Study. PLoS ONE, 4(8), e6481. https://doi.org/10.1371/journal.pone.0006481
- Vidau, C., Diogon, M., Aufauvre, J., Fontbonne, R., Viguès, B., Brunet, J. L., Texier, C., Biron, D. G., Blot, N., el Alaoui, H., Belzunces, L. P., & Delbac, F. (2011). Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae. PLoS ONE, 6(6), e21550. https://doi.org/10.1371/journal.pone.0021550
- Wu, J. Y., Smart, M. D., Anelli, C. M., & Sheppard, W. S. (2012). Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. Journal of Invertebrate Pathology, 109(3), 326–329. https://doi.org/10.1016/j.jip.2012.01.005
- Ziegelmann, B., Abele, E., Hannus, S., Beitzinger, M., Berg, S., & Rosenkranz, P. (2018). Lithium chloride effectively kills the honey bee parasite Varroa destructor by a systemic mode of action. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-017-19137-5
The Effects of Coumaphos and Lithium Chloride Exposure on Honey Bees’ (Apis mellifera) Sugar Consumption, Survivability and Nosema ceranae Susceptibility
Year 2024,
, 201 - 208, 05.07.2024
Samet Okuyan
,
Salim Aktürk
,
Yeliz Kaşko Arıcı
,
Gökhan Akdeniz
,
Serhat Solmaz
,
Süleyman Alparslan
,
Saffet Sansar
,
Aziz Gül
,
İrfan Kandemir
Abstract
Objective: The main objective of this study was to assess the effects of coumaphos and lithium chloride exposure used in Varroa control on the life span, sucrose consumption, and Nosema ceranae susceptibility of worker honey bees (Apis mellifera).
Materials and Methods: In this research, two frames of capped brood were taken from three Caucasian honey bee colonies and incubated at 35°C and 80% relative humidity. Newly emerged worker bees were collected into experimental cages, with 50 bees per cage, and fed ad libitum with sugar syrup and pollen. Bees; the control group consisted of those exposed to coumaphos, those exposed to lithium chloride, and those exposed to acetone (coumaphos solvent). In addition to these four groups, the same groups were divided into eight groups, including those infected with N. ceranae spores. Sugar syrup consumption and mortality rates were recorded daily, while. ceranae spore counts were conducted at the end of the trial.
Results: The study found that there were no statistically significant variations in mortality rates and sucrose solution consumption among the groups (p>0.05). The groups treated with lithium chloride, lithium chloride Nosema, and coumaphos showed considerably lower Nosema spore counts compared to the other groups (p<0.05).
Conclusion: Exposure to lithium chloride significantly reduced the spore counts in groups infected with N. ceranae (p<0.05). No statistically significant differences were found in terms of sucrose consumption among the groups, indicating that exposure did not have a significant effect on the feeding habits of the bees. Consequently, research should be conducted on the potential benefits of lithium chloride against N. ceranae infections, beyond its use in controlling varroa mites.
References
- Aizen, M. A., & Harder, L. D. (2009). The Global Stock of Domesticated Honey Bees Is Growing Slower Than Agricultural Demand for Pollination. Current Biology, 19(11), 915–918. https://doi.org/10.1016/j.cub.2009.03.071
- Alaux, C., Brunet, J. L., Dussaubat, C., Mondet, F., Tchamitchan, S., Cousin, M., Brillard, J., Baldy, A., Belzunces, L. P., & le Conte, Y. (2010). Interactions betweenNosemamicrospores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology, 12(3), 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x
- Boncristiani, H., Underwood, R., Schwarz, R., Evans, J. D., Pettis, J., & vanEngelsdorp, D. (2012). Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. Journal of Insect Physiology, 58(5), 613–620. https://doi.org/10.1016/j.jinsphys.2011.12.011
- Cornman, R. S., Tarpy, D. R., Chen, Y., Jeffreys, L., Lopez, D., Pettis, J. S., vanEngelsdorp, D., & Evans, J. D. (2012). Pathogen Webs in Collapsing Honey Bee Colonies. PLoS ONE, 7(8), e43562. https://doi.org/10.1371/journal.pone.0043562
- Elzen,P. J.and Westervelt,D., American Bee Journal, Detection of coumaphos resistance in Varroa destructor in Florida 20023071108, USA, 142, (4), Hamilton, American Bee Journal, (291–292).
- Foley, K., Fazio, G., Jensen, A. B., & Hughes, W. O. (2012). Nutritional limitation and resistance to opportunistic Aspergillus parasites in honey bee larvae. Journal of Invertebrate Pathology, 111(1), 68–73. https://doi.org/10.1016/j.jip.2012.06.006
- Gashout, H. (2017). Effect of sub-lethal doses of synthetic and natural acaricides on honey bee (Apis mellifera L.) health, memory, behaviour and associated gene expression. Environmental Sciences.
- Higes, M., Martín, R., & Meana, A. (2006). Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of Invertebrate Pathology, 92(2), 93–95. https://doi.org/10.1016/j.jip.2006.02.005
- Higes, M., García-Palencia, P., Martín-Hernández, R., & Meana, A. (2007). Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). Journal of Invertebrate Pathology, 94(3), 211–217. https://doi.org/10.1016/j.jip.2006.11.001
- Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2006). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721
- Malone, L. A., & Gatehouse (Née Edmonds), H. S. (1998). Effects of Nosema apis Infection on Honey Bee (Apis mellifera) Digestive Proteolytic Enzyme Activity. Journal of Invertebrate Pathology, 71(2), 169–174. https://doi.org/10.1006/jipa.1997.4715
- Mayack, C., & Naug, D. (2009). Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. Journal of Invertebrate Pathology, 100(3), 185–188. https://doi.org/10.1016/j.jip.2008.12.001
- National Research Council, Studies, D. O. E. A. L., Resources, B. O. A. A. N., Sciences, B. O. L., & America, C. O. T. S. O. P. I. N. (2007). Status of Pollinators in North America (Illustrated ed.). National Academies Press.
- Pettis, J. S., vanEngelsdorp, D., Johnson, J., & Dively, G. (2012). Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften, 99(2), 153–158. https://doi.org/10.1007/s00114-011-0881-1
- Rosenkranz, P., Aumeier, P., & Ziegelmann, B. (2010). Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, S96–S119. https://doi.org/10.1016/j.jip.2009.07.016
- Utuk, A. E., Piskin, F. C., Girisgin, A. O., Selcuk, O., & Aydin, L. (2015). Microscopic and molecular detection of nosema spp. in honeybees of Turkey. Apidologie, 47(2), 267–271. https://doi.org/10.1007/s13592-015-0394-6
- vanEngelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D. R., & Pettis, J. S. (2009). Colony Collapse Disorder: A Descriptive Study. PLoS ONE, 4(8), e6481. https://doi.org/10.1371/journal.pone.0006481
- Vidau, C., Diogon, M., Aufauvre, J., Fontbonne, R., Viguès, B., Brunet, J. L., Texier, C., Biron, D. G., Blot, N., el Alaoui, H., Belzunces, L. P., & Delbac, F. (2011). Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae. PLoS ONE, 6(6), e21550. https://doi.org/10.1371/journal.pone.0021550
- Wu, J. Y., Smart, M. D., Anelli, C. M., & Sheppard, W. S. (2012). Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. Journal of Invertebrate Pathology, 109(3), 326–329. https://doi.org/10.1016/j.jip.2012.01.005
- Ziegelmann, B., Abele, E., Hannus, S., Beitzinger, M., Berg, S., & Rosenkranz, P. (2018). Lithium chloride effectively kills the honey bee parasite Varroa destructor by a systemic mode of action. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-017-19137-5