Research Article
BibTex RIS Cite

Determination of Tolerance to Drought Stress of Two American Grapevine Rootstocks by PEG Application

Year 2023, Volume: 12 Issue: 2, 153 - 162, 31.12.2023
https://doi.org/10.29278/azd.1329126

Abstract

Objective: This study was conducted to establish the in vivo protocol for the use of polyethylene glycol (PEG-6000) in 5BB (V. berlandieri x V. riparia) and 1103P (V. berlandieri x V. rupestris) American grapevine rootstocks, as well as to determine the plants' resilience to artificially induced drought stress.
Materials and Methods: The experimental design of this study was planned as a randomized complete plot design with 3 replications, each consisting of 10 plants. Polyethylene glycol (PEG-6000) was administered to the plants in each irrigation at doses of 0%, 2%, 4%, 8%, and 16%, based on the percentage of irrigation water. The application lasted for a total of 3 weeks. The study investigated the responses of plants to drought in terms of shoot development parameters (shoot fresh weight, shoot dry weight, shoot length, node and leaf number, leaf area, shoot tolerance ratio), root development parameters (root fresh weight, root number, rooting rate, root tolerance ratio, root length), and physiological development parameters (plant vitality, damage degree, leaf turgor weight, chlorophyll content, ion flux, and cell membrane damage rate).
Results: When examining the findings of the study, it was observed that polyethylene glycol material retained water, reducing the plant's water uptake and consequently creating artificial drought stress. The impact of drought induced by polyethylene glycol revealed that the 1103P rootstock exhibited higher resilience in shoot development parameters compared to the 5BB rootstock. On the contrary, the 5BB rootstock outperformed the 1103P rootstock in root development parameters. Concerning physiological development parameters, the severity of drought led to a significant decrease in plant vitality, chlorophyll content, and leaf turgor weight, while ion flux, cell membrane damage rate, and damage degree increased significantly to critical levels.
Conclusion: As a result of the research, the 1103P rootstock was found to be more successful in terms of shoot and physiological development under drought conditions, while the 5BB rootstock was found to be more successful in terms of root development parameters. Compared to other cultivation environments (in vitro, hydroponics), it was determined that polyethylene glycol (PEG) had a less pronounced effect at lower doses due to the difficulty of binding PEG in the soil. However, when compared to control plants, statistically significant differences were observed in the examined traits. Regarding the parameters investigated in this study, the 16% PEG concentration used was identified as the most effective dose in triggering drought stress.

References

  • Bohnert, H. J., & Jensen, R. G. (1996). Strategies for engineering water-stress tolerance in plants. TIBTECH, 14(3), 89-97.
  • Buyuk, İ., Aydın, S. S., & Aras, S. (2012). Bitkilerin stres koşullarına verdiği moleküler cevaplar. Turk Hij. Den. Biyol. Derg., 69(2), 97-110.
  • Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought from genes to the whole plant. Functional plant biology, 30(3), 239-264.
  • Cochetel, N., Ghan, R., Toups, H. S., Degu, A., Tillett, R. L., Schlauch, K. A., & Cramer, G. R. (2020). Drought tolerance of the grapevine, Vitis champinii cv. Ramsey, is associated with higher photosynthesis and greater transcriptomic responsiveness of abscisic acid biosynthesis and signaling. BMC plant biology, 20(1), 1-25.
  • Collado, M. B., Arturi, M. J., Auilicino, M. B., & Molina, M. C. (2010). Identification of salt tolerance in seedling of maize (Zea mays. L.) with cell membrane stability trait. Int Res J Plant Sci., 1, 126–132.
  • Dry, P. R., Loveys, B. R., & Düring, H. (2000). Partial drying of the rootzone of grape. I. Transient changes in shoot growth and gas exchange. Vitis, 39(1), 3-7.
  • Gao, P., Liu, Z. C., & Liu, Y. P. (2009). Response and Drought Resistance of Four Grape Varieties to Water Stress. Journal of Henan Agricultural Sciences, 3, 79-81.
  • Gavuzzi, P., Rizza, F., Palumbo, M., Campanile, R. G., Ricciardi, G. L., & Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77(4), 523-531.
  • Gecene, I. (2020). Kokulu Üzümün (Vitis Labrusca L.) Kuraklık Stresine Toleransının Peg Uygulamasıyla In Vitro Koşullarda Belirlenmesi. (Master Thesis, Ordu). Address: https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • George, S., Jatoi, S. A., & Siddiqui, S. U. (2013). Genotypic differences against PEG simulated drought stress in tomato. Pak. J. Bot, 45(5), 1551-1556.
  • Gopal, J., & Iwama, K. (2007). In vitro screening of potato against water-stress mediated through sorbitol and polyethylene glycol. Plant cell reports, 26(5), 693-700.
  • Hardie, W. J, & Martin, S. R. (2000). Shoot growth on de-fruited grapevines: a physiological indicator for irrigation scheduling. Australian Journal of Grape and Wine Research, 6, 52–58.
  • Harris, D., Tripathi, R. S., & Joshi, A. (2002). On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. Research Strategies and Opportunities, 12(1), 231-240.
  • Govindaraj, M., Shanmugasundaram, P., Sumathi, P., & Muthiah, A. R. (2010). Simple, rapid and cost-effective screening method for drought resistant breeding in pearl millet. Electronic journal of plant breeding, 1(4), 590-599.
  • Alves, F., Eldmann, M., Costa, J., Costa, P., Costa, P. L., & Symington, C. (2012). Effects of rootstock and environment on the behaviour of autochthone grapevine varieties in the Douro region. IVES Conference Series, Terroir 2012.
  • Ipek, M., & Pirlak L. (2016). Determination of Myrobolan 29C rootstocks reactions against drought stress in vitro conditions. Doctoral Thesis, Selçuk University, Konya.
  • Khan, A. N., Qureshi, R. H., & Ahmad, N. (2004). Salt tolerance of cotton cultivars in relation to relative growth rate in saline environments. International Journal of Agriculture & Biology, 6(5), 786-787.
  • Kocamaz, E. (1983). Bağların sulanması. Bağcılıkla İlgili Müessesemiz Yayınları ve Seminer Notları, 3, 69-78. Address: https://kutuphane.tarimorman.gov.tr/vufind/Record/6126
  • Kusvuran, Ş. (2010). Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar. Doctoral Thesis, Çukurova University Adana.
  • Kusvuran, Ş., & Daşgan, H. Y. (2019). Kuraklığa Tolerant Domateslerde Antioksidatif Savunma Unsurlarının Seleksiyon Kriterleri Olarak İncelenmesi. Proje no: 118O574,ss.53.Address:https://search.trdizin.gov.tr/tr/yayin/detay/619087/
  • Larher, F., Leport, L., Petrivalsky, M., & Chappart, M. (1993). Effectors for the osmoinduced proline response in higher plants. Plant physiology and biochemistry, 31(6), 911-922.
  • Levitt, J. (1980). Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing, and High Temperature Stresses. Academic Press.
  • Lorenz, D. H., Eichhorn, K. W., Bleiholder, H., Klose, R., Meier U., & Weber, E. (1995). Growth Stages of the Grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera) Codes and descriptions according to the extended BBCH scale. Australian Journal of Grape and Wine Research, 1(2), 100-103.
  • Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview, archives of biochemistry and biophysics. 444, 139-158.
  • Mese, N., & Tangolar S. (2019). Bazı Amerikan asma anaçlarının kurağa dayanımının in vitro’da polietilen glikol kullanılarak belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(3), 466–475.
  • Ozcan, S., Babaoğlu, M., & Gürel, E. (2004). Bitki biyoteknolojisi genetik mühendisliği ve uygulamaları. SÜ Vakfı Yayınları, Konya.
  • Ozden, M., Demirel, U., & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119(2), 163–168.
  • Premachandra, G. S., & Shimada, T. (1987). The measurement of cell membrane stability using polyethylene glycol as a drought tolerance test in wheat. Japanese Journal of Crop Science, 56(1), 92-98.
  • Rucker, K. S., Kvien, C. K., Holbrook, C. C., & Hook, J. E. (1995). Identification of peanut genotypes with improved drought avoidance traits. Peanut Science, 22(1), 14-18.
  • Safi, S., Simsek, H., & Unlukara, A., (2013). Su ve tuzluluk stresinin mürdümük’te (Lathyrus sativus L.) bitki büyüme gelişme, verim ve su tüketimi üzerine etkilerinin belirlenmesi. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 30(1), 1-12.
  • Schultz, H. R, & Matthews, M. A. (1988). Resistance to water transport in shoots of Vitis vinifera L.: relation to growth at low water potential. Plant Physiology, 88, 718–724.
  • Serra, I., Strever, A., Myburgh, P. A., & Deloire, A. (2014). The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of grape and wine Research, 20(1), 1-14.
  • Sivritepe, N., Erturk, U., Yerlikaya, C., Turkan, I., Bor, M., & Ozdemir, F. (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia Plantarum, 52(3), 573–576.
  • Soar, C. J., Speirs, J., Maffei, S. M., & Loveys, B. R. (2004). Gradients in stomatal conductance, xylem sap ABA and bulk leaf ABA along canes of Vitis vinifera cv. Shiraz: Molecular and physiological studies investigating their source. Functional Plant Biology, 31(6), 659–669.
  • Yamaguchi, M, & Sharp, R. (2010). Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. J. Plant Cell Environ., 33, 590-603.
  • Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M., & Fang, Y. (2019). Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant physiology and biochemistry, 135, 99-110.
  • Tuberosa, R., & Salvi, S. (2006). Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci., 11, 405–412.
  • Turhan E., Dardeniz A., & Müftüoğlu N. M. (2005). Bazı Amerikan asma anaçlarının tuz stresine toleranslarının belirlenmesi. Bahçe, 34(2), 11–19.
  • Turkes, M. (1994). Artan sera etkisinin Türkiye üzerindeki etkileri. TÜBİTAK Bilim ve Teknik Dergisi, 321, 71.

İki Amerikan Asma Anacının Kuraklık Stresine Toleransının PEG Uygulaması ile Belirlenmesi

Year 2023, Volume: 12 Issue: 2, 153 - 162, 31.12.2023
https://doi.org/10.29278/azd.1329126

Abstract

Amaç: Bu çalışma 5BB (V. berlandieri x V. riparia) ve 1103P (V.berlandieri x V.rupestris) Amerikan asma anaçlarında hem polietilen glikolün (PEG-6000) in vivo şartlardaki kullanım protokolünü oluşturmak hem de bitkilerin yapay olarak oluşturulan kuraklık stresine olan dayanımlarını belirlemek için yürütülmüştür.
Materyal ve Yöntem: Çalışmadaki deneme deseni tesadüf parsellerine göre 3 tekerrürlü ve her tekerrürde 10 bitki olacak şekilde planlanmıştır. Sulama suyunun yüzdesi olacak şekilde %0, 2, 4, 8 ve 16 dozlarında PEG-6000 her sulamada tarla kapasitesine göre bitkilere verilmiştir. Uygulama toplam 3 hafta sürmüştür. Çalışmada bitkilerin kuraklığa verdiği tepkiler sürgün gelişim parametreleri (sürgün yaş ağırlığı, sürgün kuru ağırlığı, sürgün uzunluğu, boğum ve yaprak sayısı, yaprak alanı, sürgün tolerans oranı), kök gelişim parametreleri (kök yaş ağırlığı, kök sayısı, köklenme oranı, kök tolerans oranı, kök uzunluğu) ve fizyolojik gelişim parametreleri (bitki canlılığı, zarar derecesi, yaprak turgor ağırlığı, klorofil miktarı, iyon akışı ve hücre zarı zararlanma) açısından ele alınmıştır.
Araştırma Bulguları: Çalışmanın bulguları incelendiğinde polietilen glikolün suyu tutarak bitkinin su alımını azalttığı ve yapay kuraklık stresi oluşturabildiği gözlemlenmiştir. Polietilen glikolün neden olduğu kuraklığın etkisiyle beraber 1103P anacının, 5BB anacına göre sürgün gelişim parametreleri bakımından daha dayanıklı olduğu belirlenmiştir. 5BB anacı ise kök gelişim parametrelerinde 1103P anacına göre daha başarılı bulunmuştur. Fizyolojik gelişim parametrelerinde ise kuraklığın şiddeti her iki anaçta da bitkilerde canlılık, klorofil miktarı, yaprak turgor ağırlığı önemli oranda azalırken, iyon akışı, hücre zarı zararlanma oranı ve zarar derecesi kritik düzeyde yükselmiştir.
Sonuç: Araştırma sonucunda 1103P anacı kurak şartlarda sürgün gelişimi ve fizyolojik gelişim açısından daha başarılı bulunurken, 5BB anacı kök gelişim parametreleri açısından daha başarılı bulunmuştur. Diğer yetiştirme ortamlarına (in vitro, hidroponik) kıyasla toprakta polietilen glikolün bağlanmasının zorluğu nedeniyle, düşük dozlarda daha az etkiye sahip olduğu belirlenmiştir. Ancak kontrol bitkileri ile incelenen özellikler kıyaslandığında, istatistiksel olarak anlamlı farklılıklar gözlemlenmiştir. Bu çalışmada incelenen parametreler açısından, kullanılan %16'lık PEG konsantrasyonu kuraklık stresini tetiklemede en etkili doz olarak belirlenmiştir.

References

  • Bohnert, H. J., & Jensen, R. G. (1996). Strategies for engineering water-stress tolerance in plants. TIBTECH, 14(3), 89-97.
  • Buyuk, İ., Aydın, S. S., & Aras, S. (2012). Bitkilerin stres koşullarına verdiği moleküler cevaplar. Turk Hij. Den. Biyol. Derg., 69(2), 97-110.
  • Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought from genes to the whole plant. Functional plant biology, 30(3), 239-264.
  • Cochetel, N., Ghan, R., Toups, H. S., Degu, A., Tillett, R. L., Schlauch, K. A., & Cramer, G. R. (2020). Drought tolerance of the grapevine, Vitis champinii cv. Ramsey, is associated with higher photosynthesis and greater transcriptomic responsiveness of abscisic acid biosynthesis and signaling. BMC plant biology, 20(1), 1-25.
  • Collado, M. B., Arturi, M. J., Auilicino, M. B., & Molina, M. C. (2010). Identification of salt tolerance in seedling of maize (Zea mays. L.) with cell membrane stability trait. Int Res J Plant Sci., 1, 126–132.
  • Dry, P. R., Loveys, B. R., & Düring, H. (2000). Partial drying of the rootzone of grape. I. Transient changes in shoot growth and gas exchange. Vitis, 39(1), 3-7.
  • Gao, P., Liu, Z. C., & Liu, Y. P. (2009). Response and Drought Resistance of Four Grape Varieties to Water Stress. Journal of Henan Agricultural Sciences, 3, 79-81.
  • Gavuzzi, P., Rizza, F., Palumbo, M., Campanile, R. G., Ricciardi, G. L., & Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77(4), 523-531.
  • Gecene, I. (2020). Kokulu Üzümün (Vitis Labrusca L.) Kuraklık Stresine Toleransının Peg Uygulamasıyla In Vitro Koşullarda Belirlenmesi. (Master Thesis, Ordu). Address: https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • George, S., Jatoi, S. A., & Siddiqui, S. U. (2013). Genotypic differences against PEG simulated drought stress in tomato. Pak. J. Bot, 45(5), 1551-1556.
  • Gopal, J., & Iwama, K. (2007). In vitro screening of potato against water-stress mediated through sorbitol and polyethylene glycol. Plant cell reports, 26(5), 693-700.
  • Hardie, W. J, & Martin, S. R. (2000). Shoot growth on de-fruited grapevines: a physiological indicator for irrigation scheduling. Australian Journal of Grape and Wine Research, 6, 52–58.
  • Harris, D., Tripathi, R. S., & Joshi, A. (2002). On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. Research Strategies and Opportunities, 12(1), 231-240.
  • Govindaraj, M., Shanmugasundaram, P., Sumathi, P., & Muthiah, A. R. (2010). Simple, rapid and cost-effective screening method for drought resistant breeding in pearl millet. Electronic journal of plant breeding, 1(4), 590-599.
  • Alves, F., Eldmann, M., Costa, J., Costa, P., Costa, P. L., & Symington, C. (2012). Effects of rootstock and environment on the behaviour of autochthone grapevine varieties in the Douro region. IVES Conference Series, Terroir 2012.
  • Ipek, M., & Pirlak L. (2016). Determination of Myrobolan 29C rootstocks reactions against drought stress in vitro conditions. Doctoral Thesis, Selçuk University, Konya.
  • Khan, A. N., Qureshi, R. H., & Ahmad, N. (2004). Salt tolerance of cotton cultivars in relation to relative growth rate in saline environments. International Journal of Agriculture & Biology, 6(5), 786-787.
  • Kocamaz, E. (1983). Bağların sulanması. Bağcılıkla İlgili Müessesemiz Yayınları ve Seminer Notları, 3, 69-78. Address: https://kutuphane.tarimorman.gov.tr/vufind/Record/6126
  • Kusvuran, Ş. (2010). Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar. Doctoral Thesis, Çukurova University Adana.
  • Kusvuran, Ş., & Daşgan, H. Y. (2019). Kuraklığa Tolerant Domateslerde Antioksidatif Savunma Unsurlarının Seleksiyon Kriterleri Olarak İncelenmesi. Proje no: 118O574,ss.53.Address:https://search.trdizin.gov.tr/tr/yayin/detay/619087/
  • Larher, F., Leport, L., Petrivalsky, M., & Chappart, M. (1993). Effectors for the osmoinduced proline response in higher plants. Plant physiology and biochemistry, 31(6), 911-922.
  • Levitt, J. (1980). Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing, and High Temperature Stresses. Academic Press.
  • Lorenz, D. H., Eichhorn, K. W., Bleiholder, H., Klose, R., Meier U., & Weber, E. (1995). Growth Stages of the Grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera) Codes and descriptions according to the extended BBCH scale. Australian Journal of Grape and Wine Research, 1(2), 100-103.
  • Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview, archives of biochemistry and biophysics. 444, 139-158.
  • Mese, N., & Tangolar S. (2019). Bazı Amerikan asma anaçlarının kurağa dayanımının in vitro’da polietilen glikol kullanılarak belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(3), 466–475.
  • Ozcan, S., Babaoğlu, M., & Gürel, E. (2004). Bitki biyoteknolojisi genetik mühendisliği ve uygulamaları. SÜ Vakfı Yayınları, Konya.
  • Ozden, M., Demirel, U., & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119(2), 163–168.
  • Premachandra, G. S., & Shimada, T. (1987). The measurement of cell membrane stability using polyethylene glycol as a drought tolerance test in wheat. Japanese Journal of Crop Science, 56(1), 92-98.
  • Rucker, K. S., Kvien, C. K., Holbrook, C. C., & Hook, J. E. (1995). Identification of peanut genotypes with improved drought avoidance traits. Peanut Science, 22(1), 14-18.
  • Safi, S., Simsek, H., & Unlukara, A., (2013). Su ve tuzluluk stresinin mürdümük’te (Lathyrus sativus L.) bitki büyüme gelişme, verim ve su tüketimi üzerine etkilerinin belirlenmesi. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 30(1), 1-12.
  • Schultz, H. R, & Matthews, M. A. (1988). Resistance to water transport in shoots of Vitis vinifera L.: relation to growth at low water potential. Plant Physiology, 88, 718–724.
  • Serra, I., Strever, A., Myburgh, P. A., & Deloire, A. (2014). The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of grape and wine Research, 20(1), 1-14.
  • Sivritepe, N., Erturk, U., Yerlikaya, C., Turkan, I., Bor, M., & Ozdemir, F. (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia Plantarum, 52(3), 573–576.
  • Soar, C. J., Speirs, J., Maffei, S. M., & Loveys, B. R. (2004). Gradients in stomatal conductance, xylem sap ABA and bulk leaf ABA along canes of Vitis vinifera cv. Shiraz: Molecular and physiological studies investigating their source. Functional Plant Biology, 31(6), 659–669.
  • Yamaguchi, M, & Sharp, R. (2010). Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. J. Plant Cell Environ., 33, 590-603.
  • Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M., & Fang, Y. (2019). Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant physiology and biochemistry, 135, 99-110.
  • Tuberosa, R., & Salvi, S. (2006). Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci., 11, 405–412.
  • Turhan E., Dardeniz A., & Müftüoğlu N. M. (2005). Bazı Amerikan asma anaçlarının tuz stresine toleranslarının belirlenmesi. Bahçe, 34(2), 11–19.
  • Turkes, M. (1994). Artan sera etkisinin Türkiye üzerindeki etkileri. TÜBİTAK Bilim ve Teknik Dergisi, 321, 71.
There are 39 citations in total.

Details

Primary Language English
Subjects Oenology and Viticulture
Journal Section Makaleler
Authors

Mert İlhan 0000-0002-4560-4428

Hatice Bilir Ekbiç 0000-0002-2758-6713

Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 12 Issue: 2

Cite

APA İlhan, M., & Bilir Ekbiç, H. (2023). Determination of Tolerance to Drought Stress of Two American Grapevine Rootstocks by PEG Application. Akademik Ziraat Dergisi, 12(2), 153-162. https://doi.org/10.29278/azd.1329126