Research Article
BibTex RIS Cite

Bazı Salvia L. Türlerine Ait Mikroyeşillerin Biyokimyasal ve Besin Elementi İçeriklerinin Araştırılması

Year 2024, Volume: 13 Issue: 1, 149 - 158, 05.07.2024
https://doi.org/10.29278/azd.1481046

Abstract

Amaç: Bu çalışma, Salvia türlerinin bazı biyokimyasal parametreleri ile makro besin elementi içeriklerini tespit etmek amacıyla yürütülmüştür. Konu ile ilgili daha önceden yapılmış bir çalışmanın olmaması, ilk olma özelliği taşıması bu çalışmaya ayrı bir özgün değer katmaktadır. Dolayısıyla, literatüre katkı sağlayacağı öngörülmektedir.
Materyal ve Yöntem: Çalışmada, materyal olarak Salvia hispanica L. (Chia), Salvia sclarea (Misk adaçayı), Salvia dichroantha Stapf. (Kutnu), Salvia officinalis L. (Tıbbi adaçayı), Salvia microstegia Boiss. & Bal. (Yağlambaç) ve Salvia verticulata ssp. verticulata (Dadırak) türlerinin mikrofiliz olarak değerlendirilme potansiyeli araştırılmıştır. Ticari bir şirketten temin edilen steril torf, hindistan cevizi kabuğu (cocopeat) ve perlit karışımından oluşan büyüme ortamı 500 cc’lik plastik şalelerin içerisine konulmuş hafif bastırıldıktan sonra tohum ekimleri yapılmıştır. Tohumların üzeri tohum çapının 2 katı olacak şekilde toprak ile kapatılmış ve spreyleme şeklinde sulama yapılmıştır. Deneme, Tesadüf Parselleri Deneme Deseni’ ne göre 4 tekrarlamalı olarak düzenlenmiş ve tam kontrollü iklim kabinine 16/8, aydınlık/ karanlık periyotta kalacak şekilde yerleştirilmiştir.
Araştırma Bulguları: Çalışma sonucunda; en yüksek toplam klorofil içeriği (23.61 µg/g TA), Salvia hispanica türünden, toplam antioksidan aktivite kapasite (285.8 µmol TE/g), flavonoid madde (16.62 mg QE/100g) ve askorbik asit miktarı (63.85 mg LAA/100g) Salvia dichroantha Stapf. türünden, fenolik madde miktarı (210.3 mg GAE/ g) Salvia sclarea türünden elde edilmiştir. Makro besinler bakımından en yüksek Ca, Mg ve Na birikimi Salvia sclarea, en fazla K birikimi Salvia dichroantha Stapf. türünden elde edilmiştir.
Sonuç: Bu çalışma ile incelenen Salvia türlerinin mikroyeşillik olarak tüketilebilme potansiyelleri ortaya konulmuş polifenoller bakımdan zengin içeriğe sahip olan adaçayına obsiyonel bir tüketim alanı kazandırılmıştır.

Supporting Institution

This study includes some of the research data carried out by Yüzüncü Yıl University Scientific Research Projects Coordination Unit within the scope of the project titled "Investigation of Biochemical and Mineral Substance Contents of Some Medicinal and Aromatic Plant Microshoots" and numbered FBA-2021-9455.

Project Number

FBA-2021-9455

Thanks

Bu çalışma, Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından “Bazı Tıbbi ve Aromatik Bitki Mikro Filizlerinin Biyokimyasal ve Mineral Madde İçeriklerinin Araştırılması” isimli ve FBA-2021-9455 nolu proje kapsamında gerçekleştirilen araştırma verilerinin bir kısmını içermektedir. Teşekkürlerimizi sunarız.

References

  • Akhzari, D., Kalantari, N., & Mahdavi, S. (2018). Studying the effects of mycorrhiza and vermicompost fertilizers on the growth and physiological traits of Vetiver Grass (Chrysopogon zizanioides L.). Desert, 23(1): 57-62.
  • AOAC (1990). Official methods of analysis (15th ed.). Association of Official Analytical Chemists (AOAC), Arlington, Virginia, USA.
  • Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. (2010). Phenolic compounds in Brassica vegetables. Molecules, 16(1), 251-280. https://doi.org/10.3390/molecules16010251.
  • Chambial, S., Dwivedi, S., Shukla, K. K., John, P. J., & Sharma, P. (2013). Vitamin C in disease prevention and cure: an overview. Indian journal of clinical biochemistry, 28, 314-328. https://doi.org/10.1186/1475-2891-2-7.
  • Chew, B.P., & Park, J.S. (2004). Carotenoid action on the immune response. J. Nutr., 134, 257S–261S. [CrossRef]
  • Choe, U., Yu, L., & Wang, T. T. Y. (2018). The science behind microgreens as an exciting new food for the 21th century. Journal of Agricultural and Food Chemistry, 66(44): 11519–11530. https://doi.org/10.1021/acs.jafc.8b03096.
  • Dai, J., & Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules (Basel, Switzerland), 15, 7313-7352. https://doi.org/10.3390/molecules15107313.
  • Davis P.H. (1982). Flora of Turkey and The East Aegeans Islands. Vol: 1-11 The University Press. Edinburg, İngiltere. Di Bella, M. C., Niklas, A., Toscano, S., Picchi, V., Romano, D., Lo Scalzo, R., & Branca, F. (2020). Morphometric characteristics, polyphenols and ascorbic acid variation in Brassica oleracea L. novel foods: Sprouts, microgreens and baby leaves. Agronomy, 10(6), 782. https://doi.org/10.3390/agronomy10060782.
  • Doğan M., Pehlivan, S., Akaydın, G., Bağcı, E., Uysal, İ., & H.M. Doğan, H. M. (2008). Türkiye’de Yayılış Gösteren Salvia L. (Labiatae) Cinsinin Taxonomik Revizyonu. Tübitak Proje No: 104 T 450.
  • Ghoora, M.D., Haldipur, A.C., & Srividya, N. (2020). Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. J. Agric. Food Res., 2, 100046.
  • Kacar, B., & İnal, A., 2008. Bitki analizleri. Ankara: Nobel Yayınları.
  • Khoo, H. E., Prasad, K. N., Kong, K. W., Jiang, Y., & Ismail, A. (2011). Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules, 16(2), 1710-1738. https://doi.org/10.3390/molecules16021710.
  • Khosravi, F., & Asadollahzadeh, H. (2014). Determination of ascorbic acid in different citrus fruits under reversed phase conditions with UPLC, Eur. J. Exp. Biol. (Online) 4, 91-94.
  • Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep., 24, e00370.
  • Kyriacou, M.C., El-Nakhel, C., Graziani, G., Pannico, A., Soteriou, G.A., Giordano, M., & Rouphael, Y. (2019). Functional quality in novel food sources: Genotypic variation in he nutritive and phytochemical composition of thirteen microgreen species. Food Chemistry, 277, 107-118.
  • Lichtenthaler, H.K., & Welburn, A.R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biol. Soc. Trans., 11. 591-592.
  • Lutz, M., Jorquera, K., Cancino, B., Ruby, R., & Henriquez, C. (2011). Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile. Journal of Food Science, 76:1088-1093. doi:10.1111/j.1750-3841.2011.02298.x.
  • Nakipoğlu M. (1993). Türkiye’nin Salvia L. Türleri Üzerinde Karyolojik Araştırmalar. I. Türk Botanik Dergisi, 17(1): 21-258, Ankara.
  • Niroula, A., Khatri, S., Timilsina, R., Khadka, D., Khadka, A., & Ojha, P. (2019). Profile of chlorophylls and carotenoids of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) microgreens. Journal of food science and technology, 56, 2758-2763. https://doi.org/10.1007/s13197-019-03768-9.
  • Obanda, M., Owuor, P.O., & Taylor, S.J. (1997). Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. Journal of the Science of Food and Agriculture, 74(2):209-215. doi:10.1002/(SICI)1097- 0010(199706)74:2<209:AID-JSFA789>3.0.CO;2-4.
  • Padalia, S., Drabu, S., Raheja, I., Gupta, A., & Dhamija, M. (2010). Multitude potential of wheatgrass juice (Green Blood): an overview. Chron Young Sci, 1:23-28.
  • Paradiso, V.M., Castellino, M., Renna, M., Gattullo, C.E., Calasso, M., Terzano, R., Allegretta, I., Leoni, B., Caponio, F., & Santamaria, P. (2018). Nutritional characterization and shelf-life of packaged microgreens. Food Funct., 9, 5629–5640.
  • Pinto, E., Almeida, A.A., Aguiar, A.A., & Ferreira, I.M. (2015). Comparison between the mineral profile and nitrate content of micro greens and mature lettuces. Journal of Food Composition and Analysis, 37: 38-43.
  • Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, J., Luyck, M., …& Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology 72:35-40. doi:10.1016/S0378-8741(00)00196-3.
  • Rocchetti, G., Tomas, M., Zhang, L., Zengin, G., Lucini, L., & Capanoglu, E. (2020). Red beet (Beta vulgaris) and amaranth (Amaranthus sp.) microgreens: Effect of storage and in vitro gastrointestinal digestion on the untargeted metabolomic profile. Food Chem., 332, 127415.
  • Sarker, U., & Oba, S. (2019). Protein, dietary fiber, minerals, antioxidant pigments and phytochemicals, and antioxidant activity in selected red morph Amaranthus leafy vegetable. PLoS ONE, 14, e0222517.
  • Seçmen Ö., Gemici, Y., Görk, G., Bekat L., & Leblebici, E. (2000). Tohumlu Bitkiler Sistematiği. Ege Üniversitesi, Fen Fakültesi Yayınları Serisi No: 116, İzmir.
  • Sun, J., Xiao, Z., Lin, L. Z., Lester, G. E., Wang, Q., Harnly, J. M., & Chen, P. (2013). Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMS n. Journal of agricultural and food chemistry, 61(46), 10960-10970. https://doi.org/10.1021/jf401802n.
  • Taleisnik, E., Peyrano, G., & Arias, C. (1997). Response of Chlorisgayana cultivars to salinity, 1. germination and early vegetative growth, Trop. Grassl, 31, 232-240.
  • Wakeham, P. (2013). The medicinal and pharmacological screening of wheatgrass juice (Triticum aestivum L.): an investigation into chlorophyll content and antimicrobial activity. Plymouth Stud Sci., 6:20-30.
  • Weber, C.F. (2016). Nutrient content of cabbage and lettuce microgreens grown on vermicompost and hydroponic growing pads. J. Hortic., 3 :1- 5.
  • Xiao, Z., Lester, G.E., Luo, Y., & Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of Agricultural and Food Chemistry, 60: 7644- 7651. Xiao, J., & Bai, W. (2019). Bioactive phytochemicals. Critical Reviews in Food Science and Nutrition, 59(6): 827-829.
  • Yadav, L. P., Koley, T. K., Tripathi, A., & Singh, S. (2019). Antioxidant potentiality and mineral content of summer season leafy greens: Comparison at mature and microgreen stages using chemometric. Agricultural Research, 8(2): 165-175. Zhang, X., Bian, Z., Yuan, X., Chen, X., & Lu, C. (2020). A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends Food Sci. Technol., 99, 203–216.

Investigation of the Biochemical and Nutrient Content of Microgreens of Some Salvia L. Species

Year 2024, Volume: 13 Issue: 1, 149 - 158, 05.07.2024
https://doi.org/10.29278/azd.1481046

Abstract

Objective: This study was conducted to determine some biochemical parameters and macro-nutrient contents of Salvia species. The absence of a previous study on the subject adds a unique value to this research, making it the first of its kind. Therefore, it is anticipated to contribute significantly to the literature.
Materials and Methods: In this study, the potential for evaluating microphylls of Salvia hispanica L. (Chia), Salvia sclarea (Clary sage), Salvia dichroantha Stapf., Salvia officinalis L. (Common sage), Salvia microstegia Boiss. & Bal., and Salvia verticulata ssp. verticulata species was investigated. A growth medium consisting of sterilized peat, coconut coir (cocopeat), and perlite obtained from a commercial company was placed into 500 cc plastic pots, lightly pressed, and then seeds were sown. The soil was covered with a layer twice the diameter of the seed, and watering was done by spraying. The experiment was arranged in a Randomized Complete Block Design with 4 replications and placed in a fully controlled climate chamber with a 16/8 light/dark period.
Results: As a result of the study, the highest total chlorophyll content (23.61 µg/g FW) was obtained from Salvia hispanica species, while the total antioxidant activity capacity (285.8 µmol TE/g), flavonoid content (16.62 mg QE/100g), and ascorbic acid amount (63.85 mg LAA/100g) were found in Salvia dichroantha Stapf. The phenolic content (210.3 mg GAE/g) was highest in Salvia sclarea species. Regarding macro-nutrients, the highest accumulation of Ca, Mg, and Na was observed in Salvia sclarea, while the highest accumulation of K was found in Salvia dichroantha Stapf. species.
Conclusion: This study has revealed the potential for consumption of the investigated Salvia species as microgreens, providing an additional consumption area particularly for sage, which is rich in polyphenols.

Project Number

FBA-2021-9455

References

  • Akhzari, D., Kalantari, N., & Mahdavi, S. (2018). Studying the effects of mycorrhiza and vermicompost fertilizers on the growth and physiological traits of Vetiver Grass (Chrysopogon zizanioides L.). Desert, 23(1): 57-62.
  • AOAC (1990). Official methods of analysis (15th ed.). Association of Official Analytical Chemists (AOAC), Arlington, Virginia, USA.
  • Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. (2010). Phenolic compounds in Brassica vegetables. Molecules, 16(1), 251-280. https://doi.org/10.3390/molecules16010251.
  • Chambial, S., Dwivedi, S., Shukla, K. K., John, P. J., & Sharma, P. (2013). Vitamin C in disease prevention and cure: an overview. Indian journal of clinical biochemistry, 28, 314-328. https://doi.org/10.1186/1475-2891-2-7.
  • Chew, B.P., & Park, J.S. (2004). Carotenoid action on the immune response. J. Nutr., 134, 257S–261S. [CrossRef]
  • Choe, U., Yu, L., & Wang, T. T. Y. (2018). The science behind microgreens as an exciting new food for the 21th century. Journal of Agricultural and Food Chemistry, 66(44): 11519–11530. https://doi.org/10.1021/acs.jafc.8b03096.
  • Dai, J., & Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules (Basel, Switzerland), 15, 7313-7352. https://doi.org/10.3390/molecules15107313.
  • Davis P.H. (1982). Flora of Turkey and The East Aegeans Islands. Vol: 1-11 The University Press. Edinburg, İngiltere. Di Bella, M. C., Niklas, A., Toscano, S., Picchi, V., Romano, D., Lo Scalzo, R., & Branca, F. (2020). Morphometric characteristics, polyphenols and ascorbic acid variation in Brassica oleracea L. novel foods: Sprouts, microgreens and baby leaves. Agronomy, 10(6), 782. https://doi.org/10.3390/agronomy10060782.
  • Doğan M., Pehlivan, S., Akaydın, G., Bağcı, E., Uysal, İ., & H.M. Doğan, H. M. (2008). Türkiye’de Yayılış Gösteren Salvia L. (Labiatae) Cinsinin Taxonomik Revizyonu. Tübitak Proje No: 104 T 450.
  • Ghoora, M.D., Haldipur, A.C., & Srividya, N. (2020). Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. J. Agric. Food Res., 2, 100046.
  • Kacar, B., & İnal, A., 2008. Bitki analizleri. Ankara: Nobel Yayınları.
  • Khoo, H. E., Prasad, K. N., Kong, K. W., Jiang, Y., & Ismail, A. (2011). Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules, 16(2), 1710-1738. https://doi.org/10.3390/molecules16021710.
  • Khosravi, F., & Asadollahzadeh, H. (2014). Determination of ascorbic acid in different citrus fruits under reversed phase conditions with UPLC, Eur. J. Exp. Biol. (Online) 4, 91-94.
  • Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep., 24, e00370.
  • Kyriacou, M.C., El-Nakhel, C., Graziani, G., Pannico, A., Soteriou, G.A., Giordano, M., & Rouphael, Y. (2019). Functional quality in novel food sources: Genotypic variation in he nutritive and phytochemical composition of thirteen microgreen species. Food Chemistry, 277, 107-118.
  • Lichtenthaler, H.K., & Welburn, A.R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biol. Soc. Trans., 11. 591-592.
  • Lutz, M., Jorquera, K., Cancino, B., Ruby, R., & Henriquez, C. (2011). Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile. Journal of Food Science, 76:1088-1093. doi:10.1111/j.1750-3841.2011.02298.x.
  • Nakipoğlu M. (1993). Türkiye’nin Salvia L. Türleri Üzerinde Karyolojik Araştırmalar. I. Türk Botanik Dergisi, 17(1): 21-258, Ankara.
  • Niroula, A., Khatri, S., Timilsina, R., Khadka, D., Khadka, A., & Ojha, P. (2019). Profile of chlorophylls and carotenoids of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) microgreens. Journal of food science and technology, 56, 2758-2763. https://doi.org/10.1007/s13197-019-03768-9.
  • Obanda, M., Owuor, P.O., & Taylor, S.J. (1997). Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. Journal of the Science of Food and Agriculture, 74(2):209-215. doi:10.1002/(SICI)1097- 0010(199706)74:2<209:AID-JSFA789>3.0.CO;2-4.
  • Padalia, S., Drabu, S., Raheja, I., Gupta, A., & Dhamija, M. (2010). Multitude potential of wheatgrass juice (Green Blood): an overview. Chron Young Sci, 1:23-28.
  • Paradiso, V.M., Castellino, M., Renna, M., Gattullo, C.E., Calasso, M., Terzano, R., Allegretta, I., Leoni, B., Caponio, F., & Santamaria, P. (2018). Nutritional characterization and shelf-life of packaged microgreens. Food Funct., 9, 5629–5640.
  • Pinto, E., Almeida, A.A., Aguiar, A.A., & Ferreira, I.M. (2015). Comparison between the mineral profile and nitrate content of micro greens and mature lettuces. Journal of Food Composition and Analysis, 37: 38-43.
  • Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, J., Luyck, M., …& Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology 72:35-40. doi:10.1016/S0378-8741(00)00196-3.
  • Rocchetti, G., Tomas, M., Zhang, L., Zengin, G., Lucini, L., & Capanoglu, E. (2020). Red beet (Beta vulgaris) and amaranth (Amaranthus sp.) microgreens: Effect of storage and in vitro gastrointestinal digestion on the untargeted metabolomic profile. Food Chem., 332, 127415.
  • Sarker, U., & Oba, S. (2019). Protein, dietary fiber, minerals, antioxidant pigments and phytochemicals, and antioxidant activity in selected red morph Amaranthus leafy vegetable. PLoS ONE, 14, e0222517.
  • Seçmen Ö., Gemici, Y., Görk, G., Bekat L., & Leblebici, E. (2000). Tohumlu Bitkiler Sistematiği. Ege Üniversitesi, Fen Fakültesi Yayınları Serisi No: 116, İzmir.
  • Sun, J., Xiao, Z., Lin, L. Z., Lester, G. E., Wang, Q., Harnly, J. M., & Chen, P. (2013). Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMS n. Journal of agricultural and food chemistry, 61(46), 10960-10970. https://doi.org/10.1021/jf401802n.
  • Taleisnik, E., Peyrano, G., & Arias, C. (1997). Response of Chlorisgayana cultivars to salinity, 1. germination and early vegetative growth, Trop. Grassl, 31, 232-240.
  • Wakeham, P. (2013). The medicinal and pharmacological screening of wheatgrass juice (Triticum aestivum L.): an investigation into chlorophyll content and antimicrobial activity. Plymouth Stud Sci., 6:20-30.
  • Weber, C.F. (2016). Nutrient content of cabbage and lettuce microgreens grown on vermicompost and hydroponic growing pads. J. Hortic., 3 :1- 5.
  • Xiao, Z., Lester, G.E., Luo, Y., & Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of Agricultural and Food Chemistry, 60: 7644- 7651. Xiao, J., & Bai, W. (2019). Bioactive phytochemicals. Critical Reviews in Food Science and Nutrition, 59(6): 827-829.
  • Yadav, L. P., Koley, T. K., Tripathi, A., & Singh, S. (2019). Antioxidant potentiality and mineral content of summer season leafy greens: Comparison at mature and microgreen stages using chemometric. Agricultural Research, 8(2): 165-175. Zhang, X., Bian, Z., Yuan, X., Chen, X., & Lu, C. (2020). A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends Food Sci. Technol., 99, 203–216.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Medicinal and Aromatic Plants
Journal Section Makaleler
Authors

Rüveyde Tunçtürk 0000-0002-3759-8232

Muhammed Said Yolcu 0000-0002-5304-7342

Murat Tunçtürk 0000-0002-7995-0599

Ezelhan Şelem 0000-0003-4227-5013

Lütfi Nohutçu 0000-0003-2250-2645

Project Number FBA-2021-9455
Publication Date July 5, 2024
Submission Date May 9, 2024
Acceptance Date May 28, 2024
Published in Issue Year 2024 Volume: 13 Issue: 1

Cite

APA Tunçtürk, R., Yolcu, M. S., Tunçtürk, M., Şelem, E., et al. (2024). Bazı Salvia L. Türlerine Ait Mikroyeşillerin Biyokimyasal ve Besin Elementi İçeriklerinin Araştırılması. Akademik Ziraat Dergisi, 13(1), 149-158. https://doi.org/10.29278/azd.1481046