Review
BibTex RIS Cite

Use of Led Lighting in Vegetable Agriculture

Year 2024, Volume: 53 Issue: 1, 35 - 46, 29.05.2024
https://doi.org/10.53471/bahce.1318402

Abstract

Today, the world population is in a rapid increase trend, the increase in population increases the need for shelter, and the increase in the demand for industrial production areas causes the pressure on agricultural areas to increase day by day. While agricultural areas are decreasing, people's demand for food is increasing day by day due to the increase in population. The poor social life conditions, especially in the villages, cause the labor force in agriculture to shift to cities, increase the rate of urbanization, and as a result, limit agricultural production. Current conditions have revealed the necessity of encouraging production increase by applying new production techniques. Urban farming, which has emerged in recent years, aims to contribute to the solution of problems and food supply.
One of the most important environmental factors in the growth and development of plants after germination is light. The use of artificial light sources in plant production can be used to support sunlight, as well as artificial light sources can be used in grow cabinets or cabinets without sunlight. Today, LED lighting plays an important role for plants in supplementary lighting with its features such as high light and energy efficiency, long service life, low heat generation. In this study, artificial light sources that we think we will have to use in the future and that have a remarkable effect in today's use in vegetable agriculture and the results of studies in this field have been compiled.

References

  • Bagdonavičienė, A., Brazaitytė, A., Viršilė, A., Samuolienė, G., Jankauskienė, J., Sirtautas, R., Sakalauskienė, S., Miliauskienė, J., Maročkienė, N., Duchovskis, P., 2015. Cultivation of sweet pepper (Capsicum annum L.) transplants under high pressure sodium lamps supplemented by light emitting diodes of carious wavelengths. Acta Sci Pol Hortorum Cultus, 14:3-14.
  • Barbi, S., Barbieri, F., Bertacchini, A., Barbieri, L., Montorsi, M., 2021. Effects of different led light recipes and npk fertilizers on basil cultivation for automated and ıntegrated horticulture methods. Appl. Sci, 11:2497.
  • Bliznikas, Z., Žukauskas, A., Samuolienė, G., Viršilė, A., Brazaitytė, A., Jankauskienė, J., Duchovskis, P., Novičkovas, A., 2012. Effect of supplementary pre-harvest LED lighting on the antioxidant and nutritional properties of green vegetables. Acta Hortic, 939:85-91.
  • Brazaitytė, A., Duchovskis, P., Urbonavičiūtė, A., Samuolienė, G., Jankauskienė, J., Kasiulevičiūtė- Bonakerė, A., Bliznikas, Z., Novičkovas, A., Breivė, K., Žukauskas, A., 2009. The effect of light-emitting diodes lighting on cucumber transplants and after-effect on yield. Zemdirbyste-Agriculture, 96:102-118.
  • Brazaitytė, A., Viršilė, A., Samuolienė, G., Jankauskienė, J., Sakalauskienė, S., Sirtautas, R., Novičkovas, A., Dabašinskas, L., Vaštakatiė, V., Miliauskienė, J., Duchovskis, P., 2016. Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions. Acta Hortic, 1134:277-284.
  • Bugbee, B., 2016. Towards an optimal spectral quality for plant growth and development: the importance of radiation capture. Acta Hortic, 1134:1-12.
  • Carvalho, S.D., Folta, K.M, 2014. Environmentally modified organisms-expanding genetic potential with light. Crit Rev in Plant Sci, 33:486-508.
  • Chia, P.L., Kubota, C., 2010. End-of-day far-red light quality and dose requirements for tomato rootstock hypocotyl elongation. HortScience, 45:1501-1506.
  • Colonna, E., Rouphael, Y., Barbieri, G., De Pascale, S., 2016. Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem, 199:702-710.
  • Cope, K.R., Bugbee, B., 2013. Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light. HortScience, 48:504-509.
  • Çelen, İ.H., Önler, E., 2019. agriculture, forestry and aquaculture sciences research papers, bölüm: light and led lighting use in agriculture, Yayın Yeri: Gece Kitaplığı.
  • Demotes-Mainard, S., Peron, T., Corot, A., 2016. Plant responses to red and far red lights, applications in horticulture. Eviron Exp Bot, 121:4-21.
  • Deram, P., Lefsrud, M.G., Orsat, V., 2014. Supplemental lighting orientation and red-to blue ratio of light-emitting diodes for greenhouse tomato production. HortScience, 49:448-452.
  • Dieleman, J. A., Kruidhof, H. M., Weerheim, K., and Leiss, K., 2021. LED lighting strategies Aaffect physiology and resilience to pathogens and pests in eggplant (Solanum melongena L.). Front. Plant Sci, 11:610046.
  • Dzakovich, M.P., Gomez, C., Mitchell, C.A., 2015. Tomatoes grown with light-emitting diodes or high-pressure sodium supplemental lights have similar fruit-quality attributes. HortScience, 50:1498-1502.
  • Fylladitakis, E.D., 2023. Controlled LED lighting for horticulture: a review. Open Journal of Applied Sciences, 13:175-188.
  • Gerovac, J.R., Craver, J.K., Boldt, J.K., Lopez, R.G., 2016. Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of brassica microgreens. HortScience, 51:497-503.
  • Goins, G.D., Yorio, N.C., Sanwo, M.M., Brown, C.S., 1997. Photomorphogenesis, photosynthesis and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J Exp Bot, 48:1407-1413.
  • Gómez, C., Mitchell, C.A., 2015. Growth responses of tomato seedlings to different spectra of supplemental lighting. HortScience, 50:112-118.
  • Gómez, C., Mitchell, C.A., 2016. Physiological and productivity responses of high-wire tomato as affected by supplemental light source and distribution within the canopy. JASHS, 141:196-208.
  • Guo, X., Hao, X., Khosla, S., Kumar, K.G.S., Cao, R., Bennett, N., 2016. Effect of LED interlighting combined with overhead HPS light on fruit yield and quality of year-round sweet pepper in commercial greenhouse. Acta Hortic, 1134:71-78.
  • Hao, X.M., Zheng, J.M., Little, C., Khosla, S., 2012. LED inter-lighting in year-round greenhouse mini-cucumber production. Acta Hortic, 956:335-340.
  • Hernández, R., Kubota, C., 2012. Tomato seedling growth and morphological responses to supplemental LED lighting red:blue ratios under varied daily light integrals. Acta Hortic, 956:187-194.
  • Hernández, R., Kubota, C., 2014-a. Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. Sci Hort, 173:92-99.
  • Hernández, R., Kubota, C., 2014-b. LEDs supplemental lighting for vegetable transplant production: spectral evaluation and comparisons with HID technology. Acta Hortic, 1037:829-835.
  • Hernández, R., Eguchi, T., Kubota, C., 2016. Growth and morphology of vegetable seedlings under different blue and red photon flux ratios using light-emitting diodes as sole-source lighting. Acta Hortic, 1134:195-200.
  • Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., Van Ieperen, W., Harbinson, J., 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot, 61:3107-3117.
  • Hwang, H., An, S., Lee, B., Chun, C., 2020. Improvement of growth and morphology of vegetable seedlings with supplemental far-red enriched LED lights in a plant factory. Horticulturae, 6:109.
  • Johkan, M., Shoji, K., Goto, F., Hashida, S., Yoshihara, T. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience, 45:1809-1814.
  • Johkan, M., Shoji, K., Goto, F., Hashida, S., Yoshihara, T., 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ Exp Bot, 75:128-133.
  • Kanechi, M., Maekawa, A., Nishida, Y., Miyashita, E., 2016. Effects of pulsed lighting based light-emitting diodes on the growth and photosynthesis of lettuce leaves. Acta Hortic, 1134:207-214.
  • Kim, K., Kook, H., Jang, J., Lee, W.H., Kamala-Kannan, S., Chae, J.C., Lee, K.J., 2013. The effect of blue-light-emitting diodes on antioxidant properties and resistance to Botrytis cinerea in tomato. J Plant Pathol Microb, 4:203-207.
  • Koç, C., Vatandaş, M., Koç, A.B., 2009. LED aydınlatma teknolojisi ve tarımda kullanımı. 25. Tarımsal Mekanizasyon Ulusal Kongresi, 2009. Isparta. 153-158.
  • Kopsell, D.A., Sams, C.E., 2015. Blue wavelengths from LED lighting increase nutritionally important metabolites in specialty crops. HortScience, 50:1285-1288.
  • Koukounaras, A., 2021. Advanced Greenhouse Horticulture: New Technologies and Cultivation Practices. Horticulturae, Vol:7, n:1, p:1.
  • Kubota, C., Chia, P., Yang, L.Q., 2012. Applications of far-red light emitting diodes in plant production under controlled environments. Acta Hortic, 952:59-66.
  • Kumar, K.G.S., Hao, X., Khosla, S., Guo, X., Bennett, N., 2016. Comparison of HPS lighting and hybrid lighting with top HPS and intra-canopy LED lighting for high-wire mini-cucumber production. Acta Hortic, 1134:111-117.
  • Kusuma, P., Pattison, M., Bugbee, B., 2020. From physics to fixtures to food: current and potential LED efficacy. Horticulture Research, Vol.7:56.
  • Lee, M.J., Park, S.Y., Oh, M.M., 2015. Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting didoes. Hortic Environ Biote, 56:188-194.
  • Lee, M.J., Son, K.H., Oh, M.M. 2016. Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic Environ Biote, 57:139-147.
  • Li, Q., Kubota, C., 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot, 67:59-64.
  • Li, H., Tang, C., Xu, Z., Liu, X., Han, X., 2012. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). J Agr Sci, 4:262-273.
  • Lin, K.H., Huang, M.Y., Huang, W.D., Hsu, M.H., Yang, Z.W., Yang, C.M., 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hort, 150:86-91.
  • Massa, G.D., Kim, H.H., Wheeler, R.M., Mitchell, C.A., 2008. Plant productivity in response to LED lighting. HortScience, 43:1951-1956.
  • Mitchell, C.A., Both, A.J., Bourget, C.M., Burr, J.F., Kubota, C., Lopez, R.G., Morrow, R.C., Runkle, E.S., 2012. LEDs: the future of greenhouse lighting. Chron Horticult, 52:6-10.
  • Mitchell, C.A., Dzakovich, M.P., Gómez, C., Lopez, R., Burr, J.F., Hernández, R., Kubota, C., Currey, C.J., Meng, Q., Runkle, E.S., Bourget, C.M., Morrow, R.C., Both, A.J. 2015. Light-emitting diodes in horticulture. In: Janick J (ed) Horticultural reviews, Vol 43 1 87.
  • Mizuno. T., Amaki, W., Watanabe, H., 2011. Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedlings. Acta Hortic, 907:179-184.
  • Morrow, R.C., 2008. LED lighting in horticulture. HortScience, 43:1947-1950.
  • Nanya, K., Ishigami, Y., Hikosaka, S., Goto, E., 2012. Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Hortic, 956:261-266.
  • Naznin, M.T., Lefsrud, M., Gravel, V., Hao, X., 2016. Different ratios of red and blue LED light effects on coriander productivity and antioxidant properties. Acta Hortic, 1134:223-229.
  • Nelson, J.A., Bugbee, B., 2014. Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures. 9: 6.
  • Nicole, C.C.S., Charalambous, F., Martinakos, S., van de Voort, S., Li, Z., Verhoog, M., Krijn, M., 2016. Lettuce growth and quality optimization in a plant factory. Acta Hortic, 1134:231-238.
  • Ohashi-Kaneko, K., Takase, M., Kon, N., Fujiwara, K., Kurata, K., 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ Control Biol, 45:189-198.
  • Olle, M., Viršilė, A. 2013. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agr Food Sci, 22:223-234.
  • Olle, M., 2015. Methods to avoid calcium deficiency on greenhouse grown leafy crops. Lap Lambert Academic Publishing, Germany. 112 s.
  • Ouzounis, T., Razi, P.B., Fretté, X., Rosenqvist, E., Ottosen, C.O., 2015-a. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front Plant Sci, 6:19.
  • Ouzounis, T., Rosenqvist, E., Ottosen, K. 2015-b. Spectral effects of artificial light on plant physiology and secondary metabolism: a review. HortScience, 50:1128-1135.
  • Ouzounis, T., Heuvelink, E., Ji, Y., Schouten, H.J., Visser, R.G.F., Marcelis, L.F.M., 2016. Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. Acta Hortic, 1134:251-258.
  • Owen, W.G., Lopez, R., 2015. End-of-production supplemental lighting with red and blue light-emitting diodes (LEDs) influences red pigmentation of four lettuce varieties. HortScience, 50:676-684.
  • Paucek, I., Pennisi, G., Pistillo, A., Appolloni, E., Crepaldi, A., Calegari, B., Spinelli, F., Cellini, A., Gabarrell, X., Orsini F., Gianquinto, G., 2020. Supplementary LED interlighting improves yield and precocity of greenhouse tomatoes in the Mediterranean.
  • Pinho, P., Lukkala, R., Särkka, L., Teri, E., Tahvonen, R., Halonen, L., 2007. Evaluation of lettuce growth under multi-spectral-component supplemental solid state lighting in greenhouse environment. IREE 2:854-680.
  • Pinho, P., Halonen, L., 2014. Agricultural and horticultural lighting. In: Karileck R, Sun CC, Zissis G, Ma R (eds) Handbook of advanced lighting technology. Springer International Publishing, Switzerland.
  • Pocock, T., 2015. Light-emitting diodes and the modulation of specialty crops: light sensing and signaling networks in plants. HortScience, 50:1281-1284.
  • Samuolienė, G., Brazaitytė, A., Duchovskis, P., Viršilė, A., Jankauskienė, J., Sirtautas, R., Novičkovas, A., Skalauskienė, S., Sakalauskaitė, J., 2012-a. Cultivation of vegetable transplants using solid-state lamps for the short-wavelength supplementary lighting in greenhouses. Acta Hortic, 952:885-892.
  • Samuolienė, G., Brazaitytė, A., Sirtautas, R., Novičkovas, A., Duchovskis, P., 2012-b. The effect of supplementary LED lighting on the antioxidant and nutritional properties of lettuce. Acta Hortic, 952:835-841.
  • Samuolienė, G., Sirtautas, R., Brazaitytė, A., Viršilė, A., Duchovskis, P., 2012-c. Supplementary red-LED lighting and the changes in phytochemical content of two baby leaf lettuce varieties during three seasons. J Food Agric Environ, 10:7001-7706.
  • Samuolienė, G., Sirtautas, R., Brazaitytė, A., Duchovskis, P., 2012-d. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem, 134:1494-1499.
  • Samuolienė, G., Brazaitytė, A., Sirtautas, R., Viršilė, A., Sakalauskaitė, J., Sakalauskienė, S., Duchovskis, P., 2013. LED illumination affects bioactive compounds in romaine baby leaf lettuce. J Sci Food Agric, 93:3286-3291.
  • Snowden, M.C., Cope, K.R., Bugbee, B., 2016. Sensitivity of seven diverse species to blue and green light: interactions with photon flux. 11:10.
  • Son, K.H., Oh, M.M., 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience, 48:988-995.
  • Son, K.H., Oh, M.M., 2015. Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Hortic Environ Biote, 56:639-653.
  • Tarakanov, I., Yakovleva, O., Konovalova, I., Paliutina, G., Anisimov, A., 2012. Light-emitting diodes: on the way to combinatorial lighting technologies for basic research and crop production. Acta Hortic, 956:171-178.
  • Taulavuori, K., Hyöky, V., Oksanen, L., Taulavuori, E., Julkunen-Tiitto, R., 2016. Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environ Exp Bot, 121:145-150.
  • Urbonavičiūtė, A., Samuolienė, G., Brazaitytė, A., Ulinskaitė, R., Jankauskienė, J., Duchovskis, Žukauskas, A., 2008. The possibility to control the metabolism of green vegetables and sprouts using light emitting diode illumination. Scıentıfıc Works Of The Lithuanian Institute of Horticulture And Lithuanian University Of Agriculture, Sodininkystė Ir Daržınınkystė, 28(2): 83-92.
  • Van Ieperen, W., 2016. Plant growth control by light spectrum: fact or fiction. Acta Hortic, 1134:19-24.
  • Vänninen, I., Pinto, D.M., Nissinen, A.I., Johansen, N.S., Shipp, L., 2010. In the light of new greenhouse technologies: 1. Plant-mediates effects of artificial lighting on arthropods and tritrophic interactions. An Appl Biol, 157:393-414.
  • Vaštakaitė, V., Viršilė, A., Brazaitytė, A., Samuoliene, G., Jankauskiene, J., Sirtautas, R., Novičkovas, A., Dabašinskas, L., Sakalauskienė, S., Miliauskienė, J., Duchovskis, P., 2015. The effect of blue light dosage on growth and antioxidant properties of microgreens. Sodininkystė ir daržininkystė, 34 (1-2):25-35.
  • Wallace, C., Both, A.J., 2016. Evaluating operating characteristics of light sources for horticultural applications. Acta Hortic, 1134:435-443.
  • Wanlai, Z., Wenke, L., Qichang, Y., 2013. Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light emitting diodes. J Plant Nutr, 36:491-490.
  • Wojciechowska, R., Długosz-Grochowska, O., Kołton, A., Župnik, M., 2015. Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci Hortic, 187:80-86.
  • Xin, J., Liu, H., Song, S., Chen, R., Sun, G., 2015. Growth and quality of Chinese kale grown under different LEDs. Agric Sci Technol, 16:68-69.
  • Yorio, N.C., Goins, G.D., Kagie, H.R., Wheeler, R.M., Sager, J.C., 2001. Improving spinach, radish and lettuce growth under red light emitting didoes (LEDs) with blue light supplementation. HortScience, 36:380-383.
  • Zhongming, Z., Linong, L., Wangqiang, Z., Wei. L., 2020. “World Cities Report 2020: The Value of Sustainable Urbanization”.

Sebze Tarımında Led Aydınlatma Kullanımı

Year 2024, Volume: 53 Issue: 1, 35 - 46, 29.05.2024
https://doi.org/10.53471/bahce.1318402

Abstract

Günümüzde dünya nüfusu hızlı bir artış trendi içerisinde yer almakta olup, nüfus artışı barınma ihtiyacını artırmakta ve bununla birlikte sanayii üretim alanlarına olan talebin artması beraberinde tarım alanları üzerindeki baskının her geçen gün giderek artmasına neden olmaktadır. Tarım alanları azalırken, nüfus artışına bağlı olarak insanların gıdaya olan talebi de her geçen gün artış göstermektedir. Özellikle köylerin sahip olduğu zayıf sosyal hayat koşulları tarımdaki iş gücünün şehirlere kaymasına neden olmakta, kentleşme oranını artırmakta ve bunların neticesinde tarımsal üretim sınırlamaktadır. Mevcut koşullar yeni üretim tekniklerinin uygulanarak üretim artışının teşvik edilmesi gerekliliğini ortaya çıkarmıştır. Son yıllarda ortaya çıkan kent çiftçiliği uğraşı oluşan sorunların çözümüne ve gıda arzına katkıda bulunmayı hedeflemektedir.
Bitkilerin çimlenmeden sonraki süreçte büyüme ve gelişmelerinde en önemli çevresel faktörlerden birisi ışıktır. Bitkisel üretimde yapay ışık kaynaklarının kullanımı güneş ışığını desteklemek amacıyla kullanılabildiği gibi, güneş ışığı olmayan yetiştirme kabinleri veya dolaplarında da yapay ışık kaynakları kullanılabilmektedir. LED aydınlatmalar günümüzde ışık ve enerji verimliliğinin yüksek olması, kullanım ömrünün uzun olması, ısı oluşumunun düşük olması gibi özellikleri ile ek aydınlatmada bitkiler için önemli bir rol oynamaktadır. Bu çalışmada gelecekte kullanmak zorunda olacağımızı düşündüğümüz ve günümüz sebze tarımında kullanımı dikkat çekici etkiye sahip yapay ışık kaynakları ve bu alanda yapılan çalışmaların sonuçları derlenmiştir.

References

  • Bagdonavičienė, A., Brazaitytė, A., Viršilė, A., Samuolienė, G., Jankauskienė, J., Sirtautas, R., Sakalauskienė, S., Miliauskienė, J., Maročkienė, N., Duchovskis, P., 2015. Cultivation of sweet pepper (Capsicum annum L.) transplants under high pressure sodium lamps supplemented by light emitting diodes of carious wavelengths. Acta Sci Pol Hortorum Cultus, 14:3-14.
  • Barbi, S., Barbieri, F., Bertacchini, A., Barbieri, L., Montorsi, M., 2021. Effects of different led light recipes and npk fertilizers on basil cultivation for automated and ıntegrated horticulture methods. Appl. Sci, 11:2497.
  • Bliznikas, Z., Žukauskas, A., Samuolienė, G., Viršilė, A., Brazaitytė, A., Jankauskienė, J., Duchovskis, P., Novičkovas, A., 2012. Effect of supplementary pre-harvest LED lighting on the antioxidant and nutritional properties of green vegetables. Acta Hortic, 939:85-91.
  • Brazaitytė, A., Duchovskis, P., Urbonavičiūtė, A., Samuolienė, G., Jankauskienė, J., Kasiulevičiūtė- Bonakerė, A., Bliznikas, Z., Novičkovas, A., Breivė, K., Žukauskas, A., 2009. The effect of light-emitting diodes lighting on cucumber transplants and after-effect on yield. Zemdirbyste-Agriculture, 96:102-118.
  • Brazaitytė, A., Viršilė, A., Samuolienė, G., Jankauskienė, J., Sakalauskienė, S., Sirtautas, R., Novičkovas, A., Dabašinskas, L., Vaštakatiė, V., Miliauskienė, J., Duchovskis, P., 2016. Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions. Acta Hortic, 1134:277-284.
  • Bugbee, B., 2016. Towards an optimal spectral quality for plant growth and development: the importance of radiation capture. Acta Hortic, 1134:1-12.
  • Carvalho, S.D., Folta, K.M, 2014. Environmentally modified organisms-expanding genetic potential with light. Crit Rev in Plant Sci, 33:486-508.
  • Chia, P.L., Kubota, C., 2010. End-of-day far-red light quality and dose requirements for tomato rootstock hypocotyl elongation. HortScience, 45:1501-1506.
  • Colonna, E., Rouphael, Y., Barbieri, G., De Pascale, S., 2016. Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem, 199:702-710.
  • Cope, K.R., Bugbee, B., 2013. Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light. HortScience, 48:504-509.
  • Çelen, İ.H., Önler, E., 2019. agriculture, forestry and aquaculture sciences research papers, bölüm: light and led lighting use in agriculture, Yayın Yeri: Gece Kitaplığı.
  • Demotes-Mainard, S., Peron, T., Corot, A., 2016. Plant responses to red and far red lights, applications in horticulture. Eviron Exp Bot, 121:4-21.
  • Deram, P., Lefsrud, M.G., Orsat, V., 2014. Supplemental lighting orientation and red-to blue ratio of light-emitting diodes for greenhouse tomato production. HortScience, 49:448-452.
  • Dieleman, J. A., Kruidhof, H. M., Weerheim, K., and Leiss, K., 2021. LED lighting strategies Aaffect physiology and resilience to pathogens and pests in eggplant (Solanum melongena L.). Front. Plant Sci, 11:610046.
  • Dzakovich, M.P., Gomez, C., Mitchell, C.A., 2015. Tomatoes grown with light-emitting diodes or high-pressure sodium supplemental lights have similar fruit-quality attributes. HortScience, 50:1498-1502.
  • Fylladitakis, E.D., 2023. Controlled LED lighting for horticulture: a review. Open Journal of Applied Sciences, 13:175-188.
  • Gerovac, J.R., Craver, J.K., Boldt, J.K., Lopez, R.G., 2016. Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of brassica microgreens. HortScience, 51:497-503.
  • Goins, G.D., Yorio, N.C., Sanwo, M.M., Brown, C.S., 1997. Photomorphogenesis, photosynthesis and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J Exp Bot, 48:1407-1413.
  • Gómez, C., Mitchell, C.A., 2015. Growth responses of tomato seedlings to different spectra of supplemental lighting. HortScience, 50:112-118.
  • Gómez, C., Mitchell, C.A., 2016. Physiological and productivity responses of high-wire tomato as affected by supplemental light source and distribution within the canopy. JASHS, 141:196-208.
  • Guo, X., Hao, X., Khosla, S., Kumar, K.G.S., Cao, R., Bennett, N., 2016. Effect of LED interlighting combined with overhead HPS light on fruit yield and quality of year-round sweet pepper in commercial greenhouse. Acta Hortic, 1134:71-78.
  • Hao, X.M., Zheng, J.M., Little, C., Khosla, S., 2012. LED inter-lighting in year-round greenhouse mini-cucumber production. Acta Hortic, 956:335-340.
  • Hernández, R., Kubota, C., 2012. Tomato seedling growth and morphological responses to supplemental LED lighting red:blue ratios under varied daily light integrals. Acta Hortic, 956:187-194.
  • Hernández, R., Kubota, C., 2014-a. Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. Sci Hort, 173:92-99.
  • Hernández, R., Kubota, C., 2014-b. LEDs supplemental lighting for vegetable transplant production: spectral evaluation and comparisons with HID technology. Acta Hortic, 1037:829-835.
  • Hernández, R., Eguchi, T., Kubota, C., 2016. Growth and morphology of vegetable seedlings under different blue and red photon flux ratios using light-emitting diodes as sole-source lighting. Acta Hortic, 1134:195-200.
  • Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., Van Ieperen, W., Harbinson, J., 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot, 61:3107-3117.
  • Hwang, H., An, S., Lee, B., Chun, C., 2020. Improvement of growth and morphology of vegetable seedlings with supplemental far-red enriched LED lights in a plant factory. Horticulturae, 6:109.
  • Johkan, M., Shoji, K., Goto, F., Hashida, S., Yoshihara, T. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience, 45:1809-1814.
  • Johkan, M., Shoji, K., Goto, F., Hashida, S., Yoshihara, T., 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ Exp Bot, 75:128-133.
  • Kanechi, M., Maekawa, A., Nishida, Y., Miyashita, E., 2016. Effects of pulsed lighting based light-emitting diodes on the growth and photosynthesis of lettuce leaves. Acta Hortic, 1134:207-214.
  • Kim, K., Kook, H., Jang, J., Lee, W.H., Kamala-Kannan, S., Chae, J.C., Lee, K.J., 2013. The effect of blue-light-emitting diodes on antioxidant properties and resistance to Botrytis cinerea in tomato. J Plant Pathol Microb, 4:203-207.
  • Koç, C., Vatandaş, M., Koç, A.B., 2009. LED aydınlatma teknolojisi ve tarımda kullanımı. 25. Tarımsal Mekanizasyon Ulusal Kongresi, 2009. Isparta. 153-158.
  • Kopsell, D.A., Sams, C.E., 2015. Blue wavelengths from LED lighting increase nutritionally important metabolites in specialty crops. HortScience, 50:1285-1288.
  • Koukounaras, A., 2021. Advanced Greenhouse Horticulture: New Technologies and Cultivation Practices. Horticulturae, Vol:7, n:1, p:1.
  • Kubota, C., Chia, P., Yang, L.Q., 2012. Applications of far-red light emitting diodes in plant production under controlled environments. Acta Hortic, 952:59-66.
  • Kumar, K.G.S., Hao, X., Khosla, S., Guo, X., Bennett, N., 2016. Comparison of HPS lighting and hybrid lighting with top HPS and intra-canopy LED lighting for high-wire mini-cucumber production. Acta Hortic, 1134:111-117.
  • Kusuma, P., Pattison, M., Bugbee, B., 2020. From physics to fixtures to food: current and potential LED efficacy. Horticulture Research, Vol.7:56.
  • Lee, M.J., Park, S.Y., Oh, M.M., 2015. Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting didoes. Hortic Environ Biote, 56:188-194.
  • Lee, M.J., Son, K.H., Oh, M.M. 2016. Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic Environ Biote, 57:139-147.
  • Li, Q., Kubota, C., 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot, 67:59-64.
  • Li, H., Tang, C., Xu, Z., Liu, X., Han, X., 2012. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). J Agr Sci, 4:262-273.
  • Lin, K.H., Huang, M.Y., Huang, W.D., Hsu, M.H., Yang, Z.W., Yang, C.M., 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hort, 150:86-91.
  • Massa, G.D., Kim, H.H., Wheeler, R.M., Mitchell, C.A., 2008. Plant productivity in response to LED lighting. HortScience, 43:1951-1956.
  • Mitchell, C.A., Both, A.J., Bourget, C.M., Burr, J.F., Kubota, C., Lopez, R.G., Morrow, R.C., Runkle, E.S., 2012. LEDs: the future of greenhouse lighting. Chron Horticult, 52:6-10.
  • Mitchell, C.A., Dzakovich, M.P., Gómez, C., Lopez, R., Burr, J.F., Hernández, R., Kubota, C., Currey, C.J., Meng, Q., Runkle, E.S., Bourget, C.M., Morrow, R.C., Both, A.J. 2015. Light-emitting diodes in horticulture. In: Janick J (ed) Horticultural reviews, Vol 43 1 87.
  • Mizuno. T., Amaki, W., Watanabe, H., 2011. Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedlings. Acta Hortic, 907:179-184.
  • Morrow, R.C., 2008. LED lighting in horticulture. HortScience, 43:1947-1950.
  • Nanya, K., Ishigami, Y., Hikosaka, S., Goto, E., 2012. Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Hortic, 956:261-266.
  • Naznin, M.T., Lefsrud, M., Gravel, V., Hao, X., 2016. Different ratios of red and blue LED light effects on coriander productivity and antioxidant properties. Acta Hortic, 1134:223-229.
  • Nelson, J.A., Bugbee, B., 2014. Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures. 9: 6.
  • Nicole, C.C.S., Charalambous, F., Martinakos, S., van de Voort, S., Li, Z., Verhoog, M., Krijn, M., 2016. Lettuce growth and quality optimization in a plant factory. Acta Hortic, 1134:231-238.
  • Ohashi-Kaneko, K., Takase, M., Kon, N., Fujiwara, K., Kurata, K., 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ Control Biol, 45:189-198.
  • Olle, M., Viršilė, A. 2013. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agr Food Sci, 22:223-234.
  • Olle, M., 2015. Methods to avoid calcium deficiency on greenhouse grown leafy crops. Lap Lambert Academic Publishing, Germany. 112 s.
  • Ouzounis, T., Razi, P.B., Fretté, X., Rosenqvist, E., Ottosen, C.O., 2015-a. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front Plant Sci, 6:19.
  • Ouzounis, T., Rosenqvist, E., Ottosen, K. 2015-b. Spectral effects of artificial light on plant physiology and secondary metabolism: a review. HortScience, 50:1128-1135.
  • Ouzounis, T., Heuvelink, E., Ji, Y., Schouten, H.J., Visser, R.G.F., Marcelis, L.F.M., 2016. Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. Acta Hortic, 1134:251-258.
  • Owen, W.G., Lopez, R., 2015. End-of-production supplemental lighting with red and blue light-emitting diodes (LEDs) influences red pigmentation of four lettuce varieties. HortScience, 50:676-684.
  • Paucek, I., Pennisi, G., Pistillo, A., Appolloni, E., Crepaldi, A., Calegari, B., Spinelli, F., Cellini, A., Gabarrell, X., Orsini F., Gianquinto, G., 2020. Supplementary LED interlighting improves yield and precocity of greenhouse tomatoes in the Mediterranean.
  • Pinho, P., Lukkala, R., Särkka, L., Teri, E., Tahvonen, R., Halonen, L., 2007. Evaluation of lettuce growth under multi-spectral-component supplemental solid state lighting in greenhouse environment. IREE 2:854-680.
  • Pinho, P., Halonen, L., 2014. Agricultural and horticultural lighting. In: Karileck R, Sun CC, Zissis G, Ma R (eds) Handbook of advanced lighting technology. Springer International Publishing, Switzerland.
  • Pocock, T., 2015. Light-emitting diodes and the modulation of specialty crops: light sensing and signaling networks in plants. HortScience, 50:1281-1284.
  • Samuolienė, G., Brazaitytė, A., Duchovskis, P., Viršilė, A., Jankauskienė, J., Sirtautas, R., Novičkovas, A., Skalauskienė, S., Sakalauskaitė, J., 2012-a. Cultivation of vegetable transplants using solid-state lamps for the short-wavelength supplementary lighting in greenhouses. Acta Hortic, 952:885-892.
  • Samuolienė, G., Brazaitytė, A., Sirtautas, R., Novičkovas, A., Duchovskis, P., 2012-b. The effect of supplementary LED lighting on the antioxidant and nutritional properties of lettuce. Acta Hortic, 952:835-841.
  • Samuolienė, G., Sirtautas, R., Brazaitytė, A., Viršilė, A., Duchovskis, P., 2012-c. Supplementary red-LED lighting and the changes in phytochemical content of two baby leaf lettuce varieties during three seasons. J Food Agric Environ, 10:7001-7706.
  • Samuolienė, G., Sirtautas, R., Brazaitytė, A., Duchovskis, P., 2012-d. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem, 134:1494-1499.
  • Samuolienė, G., Brazaitytė, A., Sirtautas, R., Viršilė, A., Sakalauskaitė, J., Sakalauskienė, S., Duchovskis, P., 2013. LED illumination affects bioactive compounds in romaine baby leaf lettuce. J Sci Food Agric, 93:3286-3291.
  • Snowden, M.C., Cope, K.R., Bugbee, B., 2016. Sensitivity of seven diverse species to blue and green light: interactions with photon flux. 11:10.
  • Son, K.H., Oh, M.M., 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience, 48:988-995.
  • Son, K.H., Oh, M.M., 2015. Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Hortic Environ Biote, 56:639-653.
  • Tarakanov, I., Yakovleva, O., Konovalova, I., Paliutina, G., Anisimov, A., 2012. Light-emitting diodes: on the way to combinatorial lighting technologies for basic research and crop production. Acta Hortic, 956:171-178.
  • Taulavuori, K., Hyöky, V., Oksanen, L., Taulavuori, E., Julkunen-Tiitto, R., 2016. Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environ Exp Bot, 121:145-150.
  • Urbonavičiūtė, A., Samuolienė, G., Brazaitytė, A., Ulinskaitė, R., Jankauskienė, J., Duchovskis, Žukauskas, A., 2008. The possibility to control the metabolism of green vegetables and sprouts using light emitting diode illumination. Scıentıfıc Works Of The Lithuanian Institute of Horticulture And Lithuanian University Of Agriculture, Sodininkystė Ir Daržınınkystė, 28(2): 83-92.
  • Van Ieperen, W., 2016. Plant growth control by light spectrum: fact or fiction. Acta Hortic, 1134:19-24.
  • Vänninen, I., Pinto, D.M., Nissinen, A.I., Johansen, N.S., Shipp, L., 2010. In the light of new greenhouse technologies: 1. Plant-mediates effects of artificial lighting on arthropods and tritrophic interactions. An Appl Biol, 157:393-414.
  • Vaštakaitė, V., Viršilė, A., Brazaitytė, A., Samuoliene, G., Jankauskiene, J., Sirtautas, R., Novičkovas, A., Dabašinskas, L., Sakalauskienė, S., Miliauskienė, J., Duchovskis, P., 2015. The effect of blue light dosage on growth and antioxidant properties of microgreens. Sodininkystė ir daržininkystė, 34 (1-2):25-35.
  • Wallace, C., Both, A.J., 2016. Evaluating operating characteristics of light sources for horticultural applications. Acta Hortic, 1134:435-443.
  • Wanlai, Z., Wenke, L., Qichang, Y., 2013. Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light emitting diodes. J Plant Nutr, 36:491-490.
  • Wojciechowska, R., Długosz-Grochowska, O., Kołton, A., Župnik, M., 2015. Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci Hortic, 187:80-86.
  • Xin, J., Liu, H., Song, S., Chen, R., Sun, G., 2015. Growth and quality of Chinese kale grown under different LEDs. Agric Sci Technol, 16:68-69.
  • Yorio, N.C., Goins, G.D., Kagie, H.R., Wheeler, R.M., Sager, J.C., 2001. Improving spinach, radish and lettuce growth under red light emitting didoes (LEDs) with blue light supplementation. HortScience, 36:380-383.
  • Zhongming, Z., Linong, L., Wangqiang, Z., Wei. L., 2020. “World Cities Report 2020: The Value of Sustainable Urbanization”.
There are 83 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Derlemeler
Authors

Elif Yazar Coşkun 0009-0009-3680-3386

İlker H Çelen 0000-0003-1652-379X

Publication Date May 29, 2024
Submission Date June 22, 2023
Acceptance Date March 1, 2024
Published in Issue Year 2024 Volume: 53 Issue: 1

Cite

APA Yazar Coşkun, E., & Çelen, İ. H. (2024). Sebze Tarımında Led Aydınlatma Kullanımı. Bahçe, 53(1), 35-46. https://doi.org/10.53471/bahce.1318402
AMA Yazar Coşkun E, Çelen İH. Sebze Tarımında Led Aydınlatma Kullanımı. Bahçe. May 2024;53(1):35-46. doi:10.53471/bahce.1318402
Chicago Yazar Coşkun, Elif, and İlker H Çelen. “Sebze Tarımında Led Aydınlatma Kullanımı”. Bahçe 53, no. 1 (May 2024): 35-46. https://doi.org/10.53471/bahce.1318402.
EndNote Yazar Coşkun E, Çelen İH (May 1, 2024) Sebze Tarımında Led Aydınlatma Kullanımı. Bahçe 53 1 35–46.
IEEE E. Yazar Coşkun and İ. H. Çelen, “Sebze Tarımında Led Aydınlatma Kullanımı”, Bahçe, vol. 53, no. 1, pp. 35–46, 2024, doi: 10.53471/bahce.1318402.
ISNAD Yazar Coşkun, Elif - Çelen, İlker H. “Sebze Tarımında Led Aydınlatma Kullanımı”. Bahçe 53/1 (May 2024), 35-46. https://doi.org/10.53471/bahce.1318402.
JAMA Yazar Coşkun E, Çelen İH. Sebze Tarımında Led Aydınlatma Kullanımı. Bahçe. 2024;53:35–46.
MLA Yazar Coşkun, Elif and İlker H Çelen. “Sebze Tarımında Led Aydınlatma Kullanımı”. Bahçe, vol. 53, no. 1, 2024, pp. 35-46, doi:10.53471/bahce.1318402.
Vancouver Yazar Coşkun E, Çelen İH. Sebze Tarımında Led Aydınlatma Kullanımı. Bahçe. 2024;53(1):35-46.

BAHCE Journal
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Horticultural Central Research Institute, Yalova 77100 TÜRKİYE
X (Twitter)LinkedinFacebookInstagram