Transient Analysis of Double Layer Metal-Gas-Dielectric-Metal DBD Cell
Year 2017,
Volume: 5 Issue: 1, 14 - 21, 28.02.2016
Gulizar Alısoy
,
Fevzi Hansu
,
Baris Baykant Alagoz
,
Hafiz Z. Alisoy
Abstract
The investigation of Dielectric Barrier Discharges (DBD) in the absence of breakdown has significance in the perspective of the technological processes based on discharge phenomena and high voltage techniques. This study carries out transient analyses for the temporal evolution of electrical field, space charge density, polarization current while charging experimental Metal-Gas-Dielectric-Metal (MGDM) DBD cell. For these proposes, a theoretical model based on current continuity and two-layer polarization mechanism is developed for the investigation of an experimental MGDM electrodes system. In the steady state, the model obeys energy conservation law. Analysis results are discussed on the basis of experimental current measurements to explain pulsed DBD current.
References
- [1] Bogaerts A., Neyts E., Gijbels R., Vander Mullen J. Gas discharge
plasmas and their applications, Spectrochimica Acta Part B: Atomic
Spect. Vol.57, pp.609-658 (2002).
[2] Napartovich A.P. Overview of atmospheric pressure discharges
producing non-thermal plasma, Plasmas Polym. Vol.6, pp.1-14, (2001).
[3] Takaki K., Shimizu M., Mukaigawa S., Fujiwara T. Effect of electrode
shape in dielectric barrier discharge plasma reactor for NOx removal,
IEEE Trans. Plasma Sci. Vol.32 pp.32-38, (2004).
[4] Hepburn D.M., Kemp I.J., Richardson R.T., Shields A.J. Role of
electrode material in partial discharge chemistry, Proceedings of the
IEEE Fifth International Conference on Conduction and Breakdown in
Solid Dielectrics, July 10–13 pp.605-610 (1995).
[5] Bhowmik S., Jana P., Chaki T.K., Ray S. Surface modification of PP
under different electrodes of DC glow discharge and its
physicochemical characteristics, Surf. Coat Technol. Vol.185 pp.81-
91(2004).
[6] Dilecce G., Ambrico P.F., De Benedictis S. N2 density measurement in
a dielectric barrier discharge in N2 and N2 with small O2 admixtures,
Plasma Sources Sci. Technol. Vol.165, pp.11–522 (2007).
[7] Golubovskii Y.B., Maiorov V.A., Li P., Lindmayer M. Effect of the
barrier material in a Townsend barrier discharge in nitrogen at
atmospheric pressure, Journal of Phys. D: Appl. Phys. Vol.39, pp.1574-
1583 (2006).
[8] Alisoy H.Z., Baysar A., Alisoy G.T. Physico-mathematical analysis of
surface modification of polymers by glow discharge in SF6+N2
medium, Physica A: Statistical Mechanics and its Appl. Vol.351
pp.347–357 (2005).
[9] Massines F., Gouda G., A comparison of polypropylene-surface
treatment by filamentary, homogeneous and glow discharges in helium
at atmospheric pressure, Journal of Physics D: Applied Phys. 313,
pp.411-3420 (1998).
[10] Amirov I.I., Izyumov M.O. Reactive ion etching of polymer films in an
oxygen inductively coupled radiofrequency-discharge plasma, High
Energy Chem. Vol.33,pp.119-123 (1999).
[11] Juvarly C.M., Aliyev (Alisoy) H.Z., Gorin Yu.V., Leonov P.V. On the
role of the negative ions in the modification of the surface by electrical
discharge, J. Surface Engineering and Applied Electrochem. Vol.138
pp.39-41 (1987).
[12] Juvarly C.M., Gorin Yu.V., Leonov P.V., Aliyev (Alisoy), H.Z.
Process, Destruction and Stabilization of Polymer Materials,
Proceedings of the Symposium on, IFRON, Dushanbe, 226 (1983).
[13] G.M. Sessler, Ed., Electrets, Berlin, Heidelberg, New York, (1980).
[14] Razevig D.V. High voltage engineering, Khanna Publishers, (1972).
[15] Bednara N., Matovićb J., Stojanovića G. Properties of surface dielectric
barrier discharge plasma generator for fabrication of nano materials, J.
Electrostat. Vol71 pp.1068–1075(2013).
[16] Kriegseis J., Möller B., Grundmann S., Tropea C., Capacitance and
power consumption quantification of dielectric barrier discharge (DBD)
plasma actuators, Capacitance and power consumption quantification of
dielectric barrier discharge (DBD) plasma actuators, J. Electrostat. Vol.
69, pp.302–312 (2011).
[17] Roth J.R. Aerodynamic flow acceleration using paraelectric and
peristaltic electrohydrodynamic effects of a one atmosphere uniform
glow discharge plasma, Physics of Plasmas, Vol.10 pp.1166–1172
(2003).
[18] Shang J.S., Surzhikov S.T., Kimmel R., Gaitonde D., Menart J., Hayes
J. Mechanisms of plasma actuators for hypersonic flow control,
Progress in Aerospace Sci. Vol.41 pp.642–668 (2005).
[19] Li Y., Zhang X., Huang X. The Use of Plasma Actuators for Bluff
Body Broadband Noise Control, Experiments in Fluids, Vol.49,
pp.367–377 (2010).
[20] Honga D., Rabata H., Pub Y.K., Leroyc A. Measurement of the surface charging of a plasma actuator using surface DBD, Journal of Electrost. Vol.71 pp.547–550 (2013).
[21] Shkurenkov I.A., Mankelevich Y.A., Rakhimova T.V. Two-dimensional simulation of an atmospheric-pressure RF DBD in a H2 : O2 mixture: discharge structures and plasma chemistry, Plasma Sources Sci. Technol. 22 (2013) 015021.
[22] Hoskinson A.R., Hershkowitz N. Double DBD Plasma Actuator Simulations and Experiments in Quiescent Air, Plasma Science, IEEE 34th International Conference on, (2007).
[23] Flores-Fuentes A.A., Peña-Eguiluz R., López-Callejas R., Mercado-Cabrera A., Valencia A. R., Barocio S.R., Godoy-Cabrera O.G., Piedad-Beneitez A. de la, Benítez-Read J.S., Pacheco-Sotelo J.O., Modelling and simulation of a DBD plasma discharge supplied by a multicell inverter, In Proceedings of the 25th IASTED international conference on Modeling, identification, and control (MIC'06), M. H. Hamza (Ed.). ACTA Press, Anaheim, CA, USA, pp.249-254 (2006).
[24] Alisoy H.Z., Alagoz S., Alisoy G.T., Alagoz B.B., An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap, Plasma Sci. Technol. Vol.15: pp.1012-1019 (2013).
[25] Kuchinskii G.S., Partial Discharge in High Voltage Constructions, L. Energy, 1979.
Year 2017,
Volume: 5 Issue: 1, 14 - 21, 28.02.2016
Gulizar Alısoy
,
Fevzi Hansu
,
Baris Baykant Alagoz
,
Hafiz Z. Alisoy
References
- [1] Bogaerts A., Neyts E., Gijbels R., Vander Mullen J. Gas discharge
plasmas and their applications, Spectrochimica Acta Part B: Atomic
Spect. Vol.57, pp.609-658 (2002).
[2] Napartovich A.P. Overview of atmospheric pressure discharges
producing non-thermal plasma, Plasmas Polym. Vol.6, pp.1-14, (2001).
[3] Takaki K., Shimizu M., Mukaigawa S., Fujiwara T. Effect of electrode
shape in dielectric barrier discharge plasma reactor for NOx removal,
IEEE Trans. Plasma Sci. Vol.32 pp.32-38, (2004).
[4] Hepburn D.M., Kemp I.J., Richardson R.T., Shields A.J. Role of
electrode material in partial discharge chemistry, Proceedings of the
IEEE Fifth International Conference on Conduction and Breakdown in
Solid Dielectrics, July 10–13 pp.605-610 (1995).
[5] Bhowmik S., Jana P., Chaki T.K., Ray S. Surface modification of PP
under different electrodes of DC glow discharge and its
physicochemical characteristics, Surf. Coat Technol. Vol.185 pp.81-
91(2004).
[6] Dilecce G., Ambrico P.F., De Benedictis S. N2 density measurement in
a dielectric barrier discharge in N2 and N2 with small O2 admixtures,
Plasma Sources Sci. Technol. Vol.165, pp.11–522 (2007).
[7] Golubovskii Y.B., Maiorov V.A., Li P., Lindmayer M. Effect of the
barrier material in a Townsend barrier discharge in nitrogen at
atmospheric pressure, Journal of Phys. D: Appl. Phys. Vol.39, pp.1574-
1583 (2006).
[8] Alisoy H.Z., Baysar A., Alisoy G.T. Physico-mathematical analysis of
surface modification of polymers by glow discharge in SF6+N2
medium, Physica A: Statistical Mechanics and its Appl. Vol.351
pp.347–357 (2005).
[9] Massines F., Gouda G., A comparison of polypropylene-surface
treatment by filamentary, homogeneous and glow discharges in helium
at atmospheric pressure, Journal of Physics D: Applied Phys. 313,
pp.411-3420 (1998).
[10] Amirov I.I., Izyumov M.O. Reactive ion etching of polymer films in an
oxygen inductively coupled radiofrequency-discharge plasma, High
Energy Chem. Vol.33,pp.119-123 (1999).
[11] Juvarly C.M., Aliyev (Alisoy) H.Z., Gorin Yu.V., Leonov P.V. On the
role of the negative ions in the modification of the surface by electrical
discharge, J. Surface Engineering and Applied Electrochem. Vol.138
pp.39-41 (1987).
[12] Juvarly C.M., Gorin Yu.V., Leonov P.V., Aliyev (Alisoy), H.Z.
Process, Destruction and Stabilization of Polymer Materials,
Proceedings of the Symposium on, IFRON, Dushanbe, 226 (1983).
[13] G.M. Sessler, Ed., Electrets, Berlin, Heidelberg, New York, (1980).
[14] Razevig D.V. High voltage engineering, Khanna Publishers, (1972).
[15] Bednara N., Matovićb J., Stojanovića G. Properties of surface dielectric
barrier discharge plasma generator for fabrication of nano materials, J.
Electrostat. Vol71 pp.1068–1075(2013).
[16] Kriegseis J., Möller B., Grundmann S., Tropea C., Capacitance and
power consumption quantification of dielectric barrier discharge (DBD)
plasma actuators, Capacitance and power consumption quantification of
dielectric barrier discharge (DBD) plasma actuators, J. Electrostat. Vol.
69, pp.302–312 (2011).
[17] Roth J.R. Aerodynamic flow acceleration using paraelectric and
peristaltic electrohydrodynamic effects of a one atmosphere uniform
glow discharge plasma, Physics of Plasmas, Vol.10 pp.1166–1172
(2003).
[18] Shang J.S., Surzhikov S.T., Kimmel R., Gaitonde D., Menart J., Hayes
J. Mechanisms of plasma actuators for hypersonic flow control,
Progress in Aerospace Sci. Vol.41 pp.642–668 (2005).
[19] Li Y., Zhang X., Huang X. The Use of Plasma Actuators for Bluff
Body Broadband Noise Control, Experiments in Fluids, Vol.49,
pp.367–377 (2010).
[20] Honga D., Rabata H., Pub Y.K., Leroyc A. Measurement of the surface charging of a plasma actuator using surface DBD, Journal of Electrost. Vol.71 pp.547–550 (2013).
[21] Shkurenkov I.A., Mankelevich Y.A., Rakhimova T.V. Two-dimensional simulation of an atmospheric-pressure RF DBD in a H2 : O2 mixture: discharge structures and plasma chemistry, Plasma Sources Sci. Technol. 22 (2013) 015021.
[22] Hoskinson A.R., Hershkowitz N. Double DBD Plasma Actuator Simulations and Experiments in Quiescent Air, Plasma Science, IEEE 34th International Conference on, (2007).
[23] Flores-Fuentes A.A., Peña-Eguiluz R., López-Callejas R., Mercado-Cabrera A., Valencia A. R., Barocio S.R., Godoy-Cabrera O.G., Piedad-Beneitez A. de la, Benítez-Read J.S., Pacheco-Sotelo J.O., Modelling and simulation of a DBD plasma discharge supplied by a multicell inverter, In Proceedings of the 25th IASTED international conference on Modeling, identification, and control (MIC'06), M. H. Hamza (Ed.). ACTA Press, Anaheim, CA, USA, pp.249-254 (2006).
[24] Alisoy H.Z., Alagoz S., Alisoy G.T., Alagoz B.B., An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap, Plasma Sci. Technol. Vol.15: pp.1012-1019 (2013).
[25] Kuchinskii G.S., Partial Discharge in High Voltage Constructions, L. Energy, 1979.