Review
BibTex RIS Cite

Trends in Power System Protection Researches: A Review of Fundamental Relays

Year 2018, Volume: 6 Issue: 4, 247 - 256, 28.10.2018
https://doi.org/10.17694/bajece.445344

Abstract

Power
system protection is one of the main element of modern energy management
concept.The main task of these systems is to deactivate the faulty element or
network part as soon as possible.The protection relays, called intelligent
electronic devices, also have different functions than these basic functions.
However, overcurrent, distance and differential protection are still used as
the three basic components.In this study, current studies on these relays for
coordination of the protection system have been analyzed. The research topic is
limited to the main functions of the relays. Further study will examine the
tasks that these relays have in providing data to the energy management system.
It can also focus on the concept of wide area protection, event recording and
modern communication protocols.

References

  • [1] A. G. Phadke, H. Horowitz, “Adaptive relaying,” IEEE Comput. Appl.Pow. M. 3:47-51, 1990.
  • [2] W. Schossig, “Protection history the start of protection,” PAC History, Autumn 68-74, 2007.
  • [3] C. Christopoulos, A. Wright, “Electrical Power System Protection,” p.104, Springer Science + Business Media, 1999
  • [4] M. Begovic, D. Novosel, M. Milisavljevic, “Trends in power system protection and control,” Decis. Support Syst 30:269–278, 2001.
  • [5] M. N. Alam, B. Das, V. Pant, “An interior point method based protection coordination scheme for directional overcurrent relays in meshed networks,” Electr. Pow. Energ. Syst. 81:153–164, 2016.
  • [6] L. Bougouffa, A. Chaghi, Investigation of TCSC controller effect on IDMT directional overcurrent relay. Proc. Soc. Be. Sci. 195:2421–2429, 2015.
  • [7] H. K. Karegara, H. A. Abyaneh, V. Ohis, M. Meshkin, “Pre-processing of the optimal coordination of overcurrent relays,” Electr. Pow. Syst. Res. 75:134–141, 2005.
  • [8] D. Birla, R. P. Maheshwari, H. O. Gupta, “Time-overcurrent relay coordination: A review,” Int. J. Emerg. Electr. Pow. Syst. 2:1-13, 2005.
  • [9] M. Y. Shih, A. C. Enríquez, T. Hsiao, L. M. T. Trevino, “Enhanced differential evolution algorithm for coordination of directional overcurrent relays,” Electr. Pow. Syst. Res. 143:365–375, 2017.
  • [10] F. Razavi, H. A. Abyaneh, M. Al-Dabbagh, R. Mohammadi, H. Torkaman, “A new comprehensive genetic algorithm method for optimal overcurrent relays coordination,” Electr. Pow. Syst. Res. 78:713–720, 2008.
  • [11] M. Ezzeddine, R. Kaczmarek, “A novel method for optimal coordination of directional overcurrent relays considering their available discrete settings and several operation characteristics,” Electr. Pow. Syst. Res. 81:1475–1481, 2011.
  • [12] C. W. So, K. K. Li, “Overcurrent relay coordination by evolutionary programming,” Electr. Pow. Syst. Res. 53:83–90, 2000.
  • [13] V. A. Papaspiliotopoulos, G. N. Korres, N. G. Maratos, “A novel quadratically constrained quadratic programming method for optimal coordination of directional overcurrent relays,” IEEE T. Power Deliver. 32:3-10, 2017.
  • [14] A. J. Urdaneta, L. G. Perez, J. F. Gomez, B. Feijoo, M. Gonzalez “Presolve analysis and interior point solutions of linear programming coordination problem of directional overcurrent relays,” Electr. Pow. Energ. Syst. 23:819-825, 2001.
  • [15] N. M. Stenane, K. A. Folly, “Application of evolutionary algorithm for optimal directional overcurrent relay coordination,” J. Comput. Commun. 2:103-111, 2014.
  • [16] J. A. Sueiro, E. Diaz-Dorado, E. Míguez, J. Cidrás, “Coordination of directional overcurrent relay using evolutionary algorithm and linear programming,” Electr. Pow. Energ. Syst. 42:299–305, 2012.
  • [17] M. Singh, B. K. Panigrahi, A. R. Abhyankar, S. Das, “Optimal coordination of directional over-current relays using informative differential evolution algorithm,” J. Comput. Sci. 5:269–276, 2014.
  • [18] M. Singh, B. K. Panigrahi, A. R. Abhyankar, “Optimal coordination of directional over-current relays using Teaching Learning-Based Optimization (TLBO) algorithm,” Electr. Pow. Energ. Syst. 50:33–41, 2013.
  • [19] M. N. Alam, B. Das, V. Pant, “A comparative study of metaheuristic optimization approaches for directional overcurrent relays coordination,” Electr. Pow. Syst. Res. 128:39–52, 2015.
  • [20] P. P. Bedekar, S. R. Bhide, “Optimum coordination of overcurrent relay timing using continuous genetic algorithm,” Expert Syst. Appl. 38:11286–11292, 2011.
  • [21] F. B. Bottura, W. M. S. Bernardes, M. Oleskovicz, E. N. Asada, “Setting directional overcurrent protection parameters using hybrid GA optimizer,” Electr. Pow. Syst. Res. 143:400–408, 2017.
  • [22] M. Thakur, A. Kumar, “Optimal coordination of directional overcurrent relays using a modified real coded genetical gorithm: A comparative study,” Electr. Pow. Energ. Syst. 82:484–495, 2016.
  • [23] C. Chen, C. Lee, C. Chang, “Optimal overcurrent relay coordination in power distribution system using a new approach,” Electr. Pow. Energ. Syst. 45:217–222, 2013.[24] Singh M, B. K. Panigrahi, A. R. Abhyankar, “Optimal overcurrent relay coordination in distribution system,” International Conference on Energy, Automation, and Signal (ICEAS), 28-30 Dec. 2011, Bhubaneswar, Odisha, India, 2011.
  • [25] S. S. Gokhale, V. S. Kale, “An application of a tent map initiated Chaotic Firefly algorithm for optimal overcurrent relay coordination,” Electr. Pow. Energ. Syst. 78:336–342, 2016.
  • [26] M. Meskin, A. Domijan, I. Grinberg, “Optimal co-ordination of overcurrent relays in the interconnected power systems using break points,” Electr. Pow. Syst. Res. 127:53–63, 2015.
  • [27] N. Mancer, B. Mahdad, K. Srairi, M. Hamed, B. Hadji, “Optimal coordination of directional overcurrent relays using PSO-TVAC,” Energ. Proc. 74:1239-1247, 2015.
  • [28] H. H. Zeineldin, E. F. El-Saadany, M. M. A. Salama, “Optimal coordination of overcurrent relays using a modified particle swarm optimization,” Electr. Pow. Syst. Res. 76:988–995, 2006.
  • [29] H. R. E. H. Bouchekara, M. Zellagui, M .A. Abido, “Optimal coordination of directional overcurrent relays using a modified electromagnetic field optimization algorithm,” Appl. Soft Comput. 54:267–283, 2017.
  • [30] A. C. Enriquez, E. V. Martinez, “Sensitivity improvement of time overcurrent relays,” Electr. Pow. Syst. Res. 77:119–124, 2007.
  • [31] M. Nojavan, H. Seyedi, M. Mehdinejad, “A novel scheme for current-only directional overcurrent relay,” Electr. Pow. Energ. Syst. 82:252–263, 2016.
  • [32] Y. L. Goh, A. K. Ramasamy, F. H. Nagi, A. A. Z. Abidin, “DSP based overcurrent relay using fuzzy bang–bang controller,” Microelectron. Reliab. 51:2366–2373, 2011.
  • [33] Goh YL, Ramasamy AK, Nagi FH, Abidin AAZ (2013) DSP based fuzzy and conventional overcurrent relay controller comparisons. Microelectron. Reliab. 53:1029–1035.
  • [34] H. K. Karegar, H. A. Abyaneh, M. Al-Dabbagh, “A flexible approach for overcurrent relay characteristics simulation,” Electr. Pow. Syst. Res. 66:233-239, 2013.
  • [35] S. Zubic, P. Balcerek, C. Zeljkovic, “Speed and security improvements of distance protection based on Discrete Wavelet and Hilbert transform,” Electr. Pow. Syst. Res. 148:27–34, 2017.
  • [36] J. D. Glover, M. S. Sarma, T. J. Overbye, “Power system analysis and design,” Fifth Edition, Cengage Learning Press, USA, 525-566, 2012.
  • [37] M. Azari, M. Ojaghi, K. Mazlumi, “An enhanced adaptive algorithm to mitigate mis-coordination problem of the third zone of distance relays,” J. Appl. Res. Tech. 13:87–96, 2015.
  • [38] J. L. Blackburn, T. J. Domin, “Protective relaying: Principles and Applications,” 3rd ed., CRC Press, FL, 2006.
  • [39] S. H. Horowitz, A. G. Phadke, “Third zone revisited,” IEEE T. Power Deliver. 21:23-29, 2006.
  • [40] M. A. Haj-Ahmed, M. S. Illindala, “Intelligent coordinated adaptive distance relaying,” Electr. Pow. Syst. Res. 110:163–171, 2014.
  • [41] H. Mehrjerdi, A. Ghorbani, “Adaptive algorithm for transmission line protection in the presence of UPFC,” Electr. Pow. Energ. Syst. 91:10–19, 2017.
  • [42] M. P. Thakre, V. S. Kale, “An adaptive approach for three zone operation of digital distance relay with Static VAR Compensator using PMU,” Electr. Pow. Energ. Syst. 77:327–336, 2016.
  • [43] M. H. Marcolino, J. B. Leite, J. R. S. Mantovani, “Optimal coordination of overcurrent directional and distance relays in meshed networks using genetic algorithm,” IEEE Latin America T. 13:2975-2982, 2015.
  • [44] S. Zubic, P. Balcerek, C. Zeljkovic, “Speed and security improvements of distance protection based on Discrete Wavelet and Hilbert transform,” Electr. Pow. Syst. Res. 148:27–34, 2017.
  • [45] H. K. Zadeh, Z. Li, “Phasor measurement unit based transmission line protection scheme design,” Electr. Pow. Syst. Res. 81:421–429, 2011.
  • [46] S. J. Zubic, M. B. Djuric, C. V. Zeljkovic, “Probabilistic assessment of new time-domain distance relay algorithms,” Electr. Pow. Syst. Res. 119:218–227, 2015.
  • [47] L. A. T. Guajardo, “Prony filter vs conventional filters for distance protection relays: An evaluation,” Electr. Pow. Syst. Res. 137:163–174, 2016.
  • [48] A. K. X. S. Campos, W. L. A. Neves, D. Jr. Fernandes, “A new phasor estimation method for digital protective relays,” Electr. Pow. Syst. Res. 142:227–236, 2017.
  • [49] S. R. Mohanty, V. R. Pandi, B. K. Panigrahi, N. Kishor, P. K. Ray, “Performance evaluation of distance relay with CT saturation,” Appl. Soft Comput. 11:4789–479, 2011.
  • [50] K. K. Li, L. L. Lai, “Ideal operating region of digital distance relay under high resistance earth fault,” Electr. Pow. Syst. Res. 43:215-219, 1997.
  • [51] C. D. L. Da Silva, G. C. Junior, A. P. De Morais, G. Marchesan, F. G. K. Guarda, “A continually online trained impedance estimation algorithm for transmission line distance protection tolerant to system frequency deviation,” Electr. Pow. Syst. Res. 147:73–80, 2017.
  • [52] S. M. Pasand, K. H. Zadeh, “An extended ANN-based high speed accurate distance protection algorithm,” Electr. Pow. Energ. Syst. 28:387–395, 2006.
  • [53] G. Chawla, M. S. Sachdev, G. Ramakrishna, “Design, implementation and testing of an artificial neural network based admittance relay,” IFAC Symposium on Power Plants and Power Systems Control, Kananaskis, Canada, 2006.
  • [54] K. H. Zadeh, Z. Li, “Adaptive load blinder for distance protection,” Electr. Pow. Energ. Syst. 33:861–867, 2011.
  • [55] M. Wen, D. Chen, X. Yin, “A novel fast distance relay for long transmission lines,” Electr. Pow. Energ. Syst. 63:681–686, 2014.
  • [56] M. R. Araujoa, C. Pereira, “A practical first-zone distance relaying algorithm for long parallel transmission lines,” Electr. Pow. Syst. Res. 146:17–24, 2017.
  • [57] M. Farzinfar, M. Jazaeri, F. Razavi, “A new approach for optimal coordination of distance and directional over-current relays using multiple embedded crossover PSO,” Electr. Pow. Energ. Syst. 61:620–628, 2014.
  • [58] M. Lukowicz, J. Magott, P. Skrobanek, “Selection of minimal tripping times for distance protection using fault trees with time dependencies,” Electr. Pow. Syst. Res. 81:1556–1571, 2011.
  • [59] M. Qais, U. Khaled, S. Alghuwainem, “Improved differential relay for bus bar protection scheme with saturated current transformers based on second order harmonics,” J. King Saud Un. Eng. Sci. xxx:xxx (Article in Press)
  • [60] M. S. Geethanjali, M. R. Slochanal, R. Bhavani, “PSO trained ANN-based differential protection scheme for power transformers,” Neurocomputing 71:904–918, 2008.
  • [61] A. Hosny, V. K. Sood, “Transformer differential protection with phase angle difference based inrush restraint,” Electr. Pow. Syst. Res. 115:57–64, 2014.
  • [62] U. N. Khan, T. S. Sidhu, “Protection of standard-delta phase shifting transformer using terminal currents and voltages,” Electr. Pow. Syst. Res. 110:31–38, 2014.
  • [63] K. R. Krishna, P. K. Dash, M. H. Naeem, “Detection, classification, and location of faults in power transmission lines,” Electr. Pow. Energ. Syst. 67:76–86, 2015.
  • [64] M. M. Abdel Aziz, A. F. Zobaa, D. K. Ibrahim, M. M. Awad “Transmission lines differential protection based on the energy conservation law,” Electr. Pow. Syst. Res. 78:1865–1872, 2008.
  • [65] M. Wen, D. Chen, X. Yin, “An energy differential relay for long transmission lines,” Electr. Pow. Energ. Syst. 55:497–502, 2014.
  • [66] F. Namdari, S. Jamali, P. A. Crossley, “Power differential based wide area protection,” Electr. Pow. Syst. Res. 77:1541–1551, 2007.
  • [67] M. Monadi, M. A. Zamani, C. K. Ciobotaru, J. I. Candela, P. Rodriguez, “A communication-assisted protection scheme for direct-current distribution networks,” Energy 109:578-591, 2016.
  • [68] A. Ukil, R. Zivanovic, “Abrupt change detection in power system fault analysis using adaptive whitening filter and wavelet transform,” Electr. Pow. Syst. Res. 76:815–823, 2006.
  • [69] M. J. B. Reddy, D. V. Rajesh, D. K. Mohanta, “Robust transmission line fault classification using wavelet multi-resolution analysis,” Comput. Electr. Eng. 39:1219–1247, 2013.
  • [70] N. Zhang, M. Kezunovic, “A real time fault analysis tool for monitoring operation of transmission line protective relay,” Electr. Pow. Syst. Res. 77:361–370, 2007.
  • [71] W. W. L. Keerthipala, C. T. Wai, W. Huisheng, “Neural network based classifier for power system protection,” Electr. Pow. Syst. Res. 42:109- 114, 1997.
  • [72] A. K. Pradhan, P. K. Dash, G. Panda, “A fast and accurate distance relaying scheme using an efficient radial basis function neural network,” Electr. Pow. Syst. Res. 60:1–8, 2011.
  • [73] T. S. Sidhu, G. Singh, M. S. Sachdev, “Arcing fault detection using artificial neural networks,” Neurocomputing 23:225-241, 1998.
  • [74] A. Yadav, A. Swetapadma, “A novel transmission line relaying scheme for fault detection and classification using wavelet transform and linear discriminant analysis,” Ain Shams Eng. J. 6:199–209, 2015.
  • [75] I. Baqui, I. Zamora, J. Mazón, G. Buigues, “High impedance fault detection methodology using wavelet transform and artificial neural networks,” Electr. Pow. Syst. Res. 81:1325–1333, 2011.
  • [76] J. Liang, S. Elangovan, J. B. X. Devotta, “Application of wavelet transform in travelling wave protection,” Electr. Pow. Energ. Syst. 22:537–542, 2000.
  • [77] M. Da Silva, M. Oleskovicz, D. V. Coury, “A hybrid fault locator for three-terminal lines based on wavelet transforms,” Electr. Pow. Syst. Res. 78:1980–1988, 2008.
  • [78] A. E. B. Abu-Elanien, A. A. Elserougi, A. S. Abdel-Khalik, A. M. Massoud, S. Ahmed, “A differential protection technique for multi-terminal HVDC,” Electr. Pow. Syst. Res. 130:78–88, 2016.
  • [79] A. E. B. Abu-Elanien, A. S. Abdel-Khalik, A. M. Massoud, S. Ahmed, “A non-communication based protection algorithm for multi-terminal HVDC grids,” Electr. Pow. Syst. Res. 144:41–51, 2017.
Year 2018, Volume: 6 Issue: 4, 247 - 256, 28.10.2018
https://doi.org/10.17694/bajece.445344

Abstract

References

  • [1] A. G. Phadke, H. Horowitz, “Adaptive relaying,” IEEE Comput. Appl.Pow. M. 3:47-51, 1990.
  • [2] W. Schossig, “Protection history the start of protection,” PAC History, Autumn 68-74, 2007.
  • [3] C. Christopoulos, A. Wright, “Electrical Power System Protection,” p.104, Springer Science + Business Media, 1999
  • [4] M. Begovic, D. Novosel, M. Milisavljevic, “Trends in power system protection and control,” Decis. Support Syst 30:269–278, 2001.
  • [5] M. N. Alam, B. Das, V. Pant, “An interior point method based protection coordination scheme for directional overcurrent relays in meshed networks,” Electr. Pow. Energ. Syst. 81:153–164, 2016.
  • [6] L. Bougouffa, A. Chaghi, Investigation of TCSC controller effect on IDMT directional overcurrent relay. Proc. Soc. Be. Sci. 195:2421–2429, 2015.
  • [7] H. K. Karegara, H. A. Abyaneh, V. Ohis, M. Meshkin, “Pre-processing of the optimal coordination of overcurrent relays,” Electr. Pow. Syst. Res. 75:134–141, 2005.
  • [8] D. Birla, R. P. Maheshwari, H. O. Gupta, “Time-overcurrent relay coordination: A review,” Int. J. Emerg. Electr. Pow. Syst. 2:1-13, 2005.
  • [9] M. Y. Shih, A. C. Enríquez, T. Hsiao, L. M. T. Trevino, “Enhanced differential evolution algorithm for coordination of directional overcurrent relays,” Electr. Pow. Syst. Res. 143:365–375, 2017.
  • [10] F. Razavi, H. A. Abyaneh, M. Al-Dabbagh, R. Mohammadi, H. Torkaman, “A new comprehensive genetic algorithm method for optimal overcurrent relays coordination,” Electr. Pow. Syst. Res. 78:713–720, 2008.
  • [11] M. Ezzeddine, R. Kaczmarek, “A novel method for optimal coordination of directional overcurrent relays considering their available discrete settings and several operation characteristics,” Electr. Pow. Syst. Res. 81:1475–1481, 2011.
  • [12] C. W. So, K. K. Li, “Overcurrent relay coordination by evolutionary programming,” Electr. Pow. Syst. Res. 53:83–90, 2000.
  • [13] V. A. Papaspiliotopoulos, G. N. Korres, N. G. Maratos, “A novel quadratically constrained quadratic programming method for optimal coordination of directional overcurrent relays,” IEEE T. Power Deliver. 32:3-10, 2017.
  • [14] A. J. Urdaneta, L. G. Perez, J. F. Gomez, B. Feijoo, M. Gonzalez “Presolve analysis and interior point solutions of linear programming coordination problem of directional overcurrent relays,” Electr. Pow. Energ. Syst. 23:819-825, 2001.
  • [15] N. M. Stenane, K. A. Folly, “Application of evolutionary algorithm for optimal directional overcurrent relay coordination,” J. Comput. Commun. 2:103-111, 2014.
  • [16] J. A. Sueiro, E. Diaz-Dorado, E. Míguez, J. Cidrás, “Coordination of directional overcurrent relay using evolutionary algorithm and linear programming,” Electr. Pow. Energ. Syst. 42:299–305, 2012.
  • [17] M. Singh, B. K. Panigrahi, A. R. Abhyankar, S. Das, “Optimal coordination of directional over-current relays using informative differential evolution algorithm,” J. Comput. Sci. 5:269–276, 2014.
  • [18] M. Singh, B. K. Panigrahi, A. R. Abhyankar, “Optimal coordination of directional over-current relays using Teaching Learning-Based Optimization (TLBO) algorithm,” Electr. Pow. Energ. Syst. 50:33–41, 2013.
  • [19] M. N. Alam, B. Das, V. Pant, “A comparative study of metaheuristic optimization approaches for directional overcurrent relays coordination,” Electr. Pow. Syst. Res. 128:39–52, 2015.
  • [20] P. P. Bedekar, S. R. Bhide, “Optimum coordination of overcurrent relay timing using continuous genetic algorithm,” Expert Syst. Appl. 38:11286–11292, 2011.
  • [21] F. B. Bottura, W. M. S. Bernardes, M. Oleskovicz, E. N. Asada, “Setting directional overcurrent protection parameters using hybrid GA optimizer,” Electr. Pow. Syst. Res. 143:400–408, 2017.
  • [22] M. Thakur, A. Kumar, “Optimal coordination of directional overcurrent relays using a modified real coded genetical gorithm: A comparative study,” Electr. Pow. Energ. Syst. 82:484–495, 2016.
  • [23] C. Chen, C. Lee, C. Chang, “Optimal overcurrent relay coordination in power distribution system using a new approach,” Electr. Pow. Energ. Syst. 45:217–222, 2013.[24] Singh M, B. K. Panigrahi, A. R. Abhyankar, “Optimal overcurrent relay coordination in distribution system,” International Conference on Energy, Automation, and Signal (ICEAS), 28-30 Dec. 2011, Bhubaneswar, Odisha, India, 2011.
  • [25] S. S. Gokhale, V. S. Kale, “An application of a tent map initiated Chaotic Firefly algorithm for optimal overcurrent relay coordination,” Electr. Pow. Energ. Syst. 78:336–342, 2016.
  • [26] M. Meskin, A. Domijan, I. Grinberg, “Optimal co-ordination of overcurrent relays in the interconnected power systems using break points,” Electr. Pow. Syst. Res. 127:53–63, 2015.
  • [27] N. Mancer, B. Mahdad, K. Srairi, M. Hamed, B. Hadji, “Optimal coordination of directional overcurrent relays using PSO-TVAC,” Energ. Proc. 74:1239-1247, 2015.
  • [28] H. H. Zeineldin, E. F. El-Saadany, M. M. A. Salama, “Optimal coordination of overcurrent relays using a modified particle swarm optimization,” Electr. Pow. Syst. Res. 76:988–995, 2006.
  • [29] H. R. E. H. Bouchekara, M. Zellagui, M .A. Abido, “Optimal coordination of directional overcurrent relays using a modified electromagnetic field optimization algorithm,” Appl. Soft Comput. 54:267–283, 2017.
  • [30] A. C. Enriquez, E. V. Martinez, “Sensitivity improvement of time overcurrent relays,” Electr. Pow. Syst. Res. 77:119–124, 2007.
  • [31] M. Nojavan, H. Seyedi, M. Mehdinejad, “A novel scheme for current-only directional overcurrent relay,” Electr. Pow. Energ. Syst. 82:252–263, 2016.
  • [32] Y. L. Goh, A. K. Ramasamy, F. H. Nagi, A. A. Z. Abidin, “DSP based overcurrent relay using fuzzy bang–bang controller,” Microelectron. Reliab. 51:2366–2373, 2011.
  • [33] Goh YL, Ramasamy AK, Nagi FH, Abidin AAZ (2013) DSP based fuzzy and conventional overcurrent relay controller comparisons. Microelectron. Reliab. 53:1029–1035.
  • [34] H. K. Karegar, H. A. Abyaneh, M. Al-Dabbagh, “A flexible approach for overcurrent relay characteristics simulation,” Electr. Pow. Syst. Res. 66:233-239, 2013.
  • [35] S. Zubic, P. Balcerek, C. Zeljkovic, “Speed and security improvements of distance protection based on Discrete Wavelet and Hilbert transform,” Electr. Pow. Syst. Res. 148:27–34, 2017.
  • [36] J. D. Glover, M. S. Sarma, T. J. Overbye, “Power system analysis and design,” Fifth Edition, Cengage Learning Press, USA, 525-566, 2012.
  • [37] M. Azari, M. Ojaghi, K. Mazlumi, “An enhanced adaptive algorithm to mitigate mis-coordination problem of the third zone of distance relays,” J. Appl. Res. Tech. 13:87–96, 2015.
  • [38] J. L. Blackburn, T. J. Domin, “Protective relaying: Principles and Applications,” 3rd ed., CRC Press, FL, 2006.
  • [39] S. H. Horowitz, A. G. Phadke, “Third zone revisited,” IEEE T. Power Deliver. 21:23-29, 2006.
  • [40] M. A. Haj-Ahmed, M. S. Illindala, “Intelligent coordinated adaptive distance relaying,” Electr. Pow. Syst. Res. 110:163–171, 2014.
  • [41] H. Mehrjerdi, A. Ghorbani, “Adaptive algorithm for transmission line protection in the presence of UPFC,” Electr. Pow. Energ. Syst. 91:10–19, 2017.
  • [42] M. P. Thakre, V. S. Kale, “An adaptive approach for three zone operation of digital distance relay with Static VAR Compensator using PMU,” Electr. Pow. Energ. Syst. 77:327–336, 2016.
  • [43] M. H. Marcolino, J. B. Leite, J. R. S. Mantovani, “Optimal coordination of overcurrent directional and distance relays in meshed networks using genetic algorithm,” IEEE Latin America T. 13:2975-2982, 2015.
  • [44] S. Zubic, P. Balcerek, C. Zeljkovic, “Speed and security improvements of distance protection based on Discrete Wavelet and Hilbert transform,” Electr. Pow. Syst. Res. 148:27–34, 2017.
  • [45] H. K. Zadeh, Z. Li, “Phasor measurement unit based transmission line protection scheme design,” Electr. Pow. Syst. Res. 81:421–429, 2011.
  • [46] S. J. Zubic, M. B. Djuric, C. V. Zeljkovic, “Probabilistic assessment of new time-domain distance relay algorithms,” Electr. Pow. Syst. Res. 119:218–227, 2015.
  • [47] L. A. T. Guajardo, “Prony filter vs conventional filters for distance protection relays: An evaluation,” Electr. Pow. Syst. Res. 137:163–174, 2016.
  • [48] A. K. X. S. Campos, W. L. A. Neves, D. Jr. Fernandes, “A new phasor estimation method for digital protective relays,” Electr. Pow. Syst. Res. 142:227–236, 2017.
  • [49] S. R. Mohanty, V. R. Pandi, B. K. Panigrahi, N. Kishor, P. K. Ray, “Performance evaluation of distance relay with CT saturation,” Appl. Soft Comput. 11:4789–479, 2011.
  • [50] K. K. Li, L. L. Lai, “Ideal operating region of digital distance relay under high resistance earth fault,” Electr. Pow. Syst. Res. 43:215-219, 1997.
  • [51] C. D. L. Da Silva, G. C. Junior, A. P. De Morais, G. Marchesan, F. G. K. Guarda, “A continually online trained impedance estimation algorithm for transmission line distance protection tolerant to system frequency deviation,” Electr. Pow. Syst. Res. 147:73–80, 2017.
  • [52] S. M. Pasand, K. H. Zadeh, “An extended ANN-based high speed accurate distance protection algorithm,” Electr. Pow. Energ. Syst. 28:387–395, 2006.
  • [53] G. Chawla, M. S. Sachdev, G. Ramakrishna, “Design, implementation and testing of an artificial neural network based admittance relay,” IFAC Symposium on Power Plants and Power Systems Control, Kananaskis, Canada, 2006.
  • [54] K. H. Zadeh, Z. Li, “Adaptive load blinder for distance protection,” Electr. Pow. Energ. Syst. 33:861–867, 2011.
  • [55] M. Wen, D. Chen, X. Yin, “A novel fast distance relay for long transmission lines,” Electr. Pow. Energ. Syst. 63:681–686, 2014.
  • [56] M. R. Araujoa, C. Pereira, “A practical first-zone distance relaying algorithm for long parallel transmission lines,” Electr. Pow. Syst. Res. 146:17–24, 2017.
  • [57] M. Farzinfar, M. Jazaeri, F. Razavi, “A new approach for optimal coordination of distance and directional over-current relays using multiple embedded crossover PSO,” Electr. Pow. Energ. Syst. 61:620–628, 2014.
  • [58] M. Lukowicz, J. Magott, P. Skrobanek, “Selection of minimal tripping times for distance protection using fault trees with time dependencies,” Electr. Pow. Syst. Res. 81:1556–1571, 2011.
  • [59] M. Qais, U. Khaled, S. Alghuwainem, “Improved differential relay for bus bar protection scheme with saturated current transformers based on second order harmonics,” J. King Saud Un. Eng. Sci. xxx:xxx (Article in Press)
  • [60] M. S. Geethanjali, M. R. Slochanal, R. Bhavani, “PSO trained ANN-based differential protection scheme for power transformers,” Neurocomputing 71:904–918, 2008.
  • [61] A. Hosny, V. K. Sood, “Transformer differential protection with phase angle difference based inrush restraint,” Electr. Pow. Syst. Res. 115:57–64, 2014.
  • [62] U. N. Khan, T. S. Sidhu, “Protection of standard-delta phase shifting transformer using terminal currents and voltages,” Electr. Pow. Syst. Res. 110:31–38, 2014.
  • [63] K. R. Krishna, P. K. Dash, M. H. Naeem, “Detection, classification, and location of faults in power transmission lines,” Electr. Pow. Energ. Syst. 67:76–86, 2015.
  • [64] M. M. Abdel Aziz, A. F. Zobaa, D. K. Ibrahim, M. M. Awad “Transmission lines differential protection based on the energy conservation law,” Electr. Pow. Syst. Res. 78:1865–1872, 2008.
  • [65] M. Wen, D. Chen, X. Yin, “An energy differential relay for long transmission lines,” Electr. Pow. Energ. Syst. 55:497–502, 2014.
  • [66] F. Namdari, S. Jamali, P. A. Crossley, “Power differential based wide area protection,” Electr. Pow. Syst. Res. 77:1541–1551, 2007.
  • [67] M. Monadi, M. A. Zamani, C. K. Ciobotaru, J. I. Candela, P. Rodriguez, “A communication-assisted protection scheme for direct-current distribution networks,” Energy 109:578-591, 2016.
  • [68] A. Ukil, R. Zivanovic, “Abrupt change detection in power system fault analysis using adaptive whitening filter and wavelet transform,” Electr. Pow. Syst. Res. 76:815–823, 2006.
  • [69] M. J. B. Reddy, D. V. Rajesh, D. K. Mohanta, “Robust transmission line fault classification using wavelet multi-resolution analysis,” Comput. Electr. Eng. 39:1219–1247, 2013.
  • [70] N. Zhang, M. Kezunovic, “A real time fault analysis tool for monitoring operation of transmission line protective relay,” Electr. Pow. Syst. Res. 77:361–370, 2007.
  • [71] W. W. L. Keerthipala, C. T. Wai, W. Huisheng, “Neural network based classifier for power system protection,” Electr. Pow. Syst. Res. 42:109- 114, 1997.
  • [72] A. K. Pradhan, P. K. Dash, G. Panda, “A fast and accurate distance relaying scheme using an efficient radial basis function neural network,” Electr. Pow. Syst. Res. 60:1–8, 2011.
  • [73] T. S. Sidhu, G. Singh, M. S. Sachdev, “Arcing fault detection using artificial neural networks,” Neurocomputing 23:225-241, 1998.
  • [74] A. Yadav, A. Swetapadma, “A novel transmission line relaying scheme for fault detection and classification using wavelet transform and linear discriminant analysis,” Ain Shams Eng. J. 6:199–209, 2015.
  • [75] I. Baqui, I. Zamora, J. Mazón, G. Buigues, “High impedance fault detection methodology using wavelet transform and artificial neural networks,” Electr. Pow. Syst. Res. 81:1325–1333, 2011.
  • [76] J. Liang, S. Elangovan, J. B. X. Devotta, “Application of wavelet transform in travelling wave protection,” Electr. Pow. Energ. Syst. 22:537–542, 2000.
  • [77] M. Da Silva, M. Oleskovicz, D. V. Coury, “A hybrid fault locator for three-terminal lines based on wavelet transforms,” Electr. Pow. Syst. Res. 78:1980–1988, 2008.
  • [78] A. E. B. Abu-Elanien, A. A. Elserougi, A. S. Abdel-Khalik, A. M. Massoud, S. Ahmed, “A differential protection technique for multi-terminal HVDC,” Electr. Pow. Syst. Res. 130:78–88, 2016.
  • [79] A. E. B. Abu-Elanien, A. S. Abdel-Khalik, A. M. Massoud, S. Ahmed, “A non-communication based protection algorithm for multi-terminal HVDC grids,” Electr. Pow. Syst. Res. 144:41–51, 2017.
There are 78 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Articlessi
Authors

Nevzat Onat

Publication Date October 28, 2018
Published in Issue Year 2018 Volume: 6 Issue: 4

Cite

APA Onat, N. (2018). Trends in Power System Protection Researches: A Review of Fundamental Relays. Balkan Journal of Electrical and Computer Engineering, 6(4), 247-256. https://doi.org/10.17694/bajece.445344

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı