Since medical imaging is one of the essential methods for the diagnosis and treatment of several diseases, the characterization and calibration of medical imaging systems with low-cost equipment is the most crucial issue. In this context, tissue-mimicking phantoms have long been used for this purpose. The advantage of phantoms is that, in addition to the desired size and internal properties, they can be produced in a way that best carries the characteristic properties of tissue models and can be standardized so that they can be used in imaging environments. For this reason, it is important to make low-cost phantom designs produced from materials that are easy to shape and available and to ensure that they can be imaged with high quality.
In this study, digital holography and binary genetic algorithm (BGA) were used to reconstruct the images of phantoms that mimic the human vascular system produced at a low cost. The obtained results showed that BGA can be used as an alternative to the reconstruction methods commonly used in digital holography. Since BGA provides an alternative solution to obtain the image with high resolution in the reconstruction process without any image processing algorithm, it enables the diagnosis of diseases related to thin vascular structures in real-time with a reliable and non-contact method.
binary genetic algorithm lateral shearing reconstruction thin vessel structures tissue-mimicking phantom
Primary Language | English |
---|---|
Subjects | Electrical Engineering |
Journal Section | Araştırma Articlessi |
Authors | |
Publication Date | January 30, 2022 |
Published in Issue | Year 2022 Volume: 10 Issue: 1 |
All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.