Research Article
BibTex RIS Cite

Design and Analysis of MEMS-Based Capacitive Power Inverter Using Electrostatic Transduction

Year 2024, Volume: 12 Issue: 2, 127 - 136, 30.08.2024
https://doi.org/10.17694/bajece.1419596

Abstract

In this study, a capacitive microelectromechanical system (MEMS) based DC/AC power inverter design for renewable energy applications is proposed, modeled, and analyzed. In the proposed approach, electrostatic actuation is preferred to develop a DC/AC power inverter with varying phase overlap lengths for solar energy systems. The operating voltage required during the analysis is applied to the active part as the tensile stress. Thus, the maximum displacement is achieved with less instability. The developed inverter is based on MEMS to achieve miniaturized performances, producing smooth sine wave output, efficiently obtaining the signal frequency, and low power consumption. The proposed inverter has a thickness of 325 μm, an active settlement area of 45x45x0.585 mm3, and an initial capacitance value of 2.9 pF. In addition, a 50 Hz mechanical resonance frequency was used to be compatible with the frequency of the city network. It can convert voltage values between 0.5V and 24V DC with a MEMS power inverter. Since the inverter is based on a capacitive structure, it provides near-zero power consumption. The frequency and waveform of the converted DC/AC signal match the AC signal of a power grid with an efficiency of 5%.

References

  • [1] H. Husin, M. Zaki, “A critical review of the integration of renewable energy sources with various Technologies” Protection and Control of Modern Power Systems, vol. 6, 1, 2021, pp. 1-18.
  • [2] B. K. Santhoshi, K. Mohanasundaram, L. A. Kumar, “ANN-based dynamic control and energy management of inverter and battery in a grid-tied hybrid renewable power system fed through switched Z-source converter” Electrical Engineering, vol. 103, 5, 2021, pp. 2285-2301.
  • [3] M. H. Ahmed, M. Wang, M. A. S. Hassan, I. Ullah, “Power loss model and efficiency analysis of three-phase inverter based on SiC MOSFETs for PV applications” IEEE Access, vol. 7, 2019, pp. 75768-75781.
  • [4] P. C. Vratny, H. Kuhn, M. Hornung, “Influences of voltage variations on electric power architectures for hybrid electric aircraft” CEAS Aeronautical Journal, vol. 8, 1, 2017, pp. 31-43.
  • [5] K. J. Chen, O. Häberlen, A. Lidow, “GaN-on-Si power technology: Devices and applications” IEEE Transactions on Electron Devices, vol. 64, 3, 2017, pp. 779-795.
  • [6] O. M. Rodríguez-Benítez, M. Ponce-Silva, J. A. Aquí-Tapia, A. Claudio-Sánchez, “Comparative performance and assessment study of a current-fed dc-dc resonant converter combining si, sic, and gan-based power semiconductor devices” Electronics, vol. 9, 11, 2020, pp. 1-15.
  • [7] T. Kaliannan, J. R. Albert, D. M. Begam, P. Madhumathi, “Power quality improvement in modular multilevel inverter using for different multicarrier PWM” European Journal of Electrical Engineering and Computer Science, vol. 5, 2, 2021, pp. 19-27.
  • [8] M. K. Das, K. C. Jana, A. Sinha “Performance evaluation of an asymmetrical reduced switched multi‐level inverter for a grid‐connected PV system” IET Renewable Power Generation, vol. 12, 2, 2018, pp. 252-263.
  • [9] M. Pichan, H. Rastegar, “Sliding-mode control of four-leg inverter with fixed switching frequency for uninterruptible power supply applications” IEEE Transactions on Industrial Electronics, vol. 64, 8, 2017, pp. 6805-6814.
  • [10] A. Sinha, K. C. Jana, M. K. Das, “An inclusive review on different multi-level inverter topologies, their modulation and control strategies for a grid connected photo-voltaic system” Solar Energy, vol. 170, 2018, pp. 633-657.
  • [11] P. Shah, X. Zhao, “Leakage current mitigation technique in solar PV array system using passive filter” IEEE Transactions on Energy Conversion, vol. 38, 1, 2022, pp. 463-478.
  • [12] M. U. Sardar, T. Vaimann, L. Kütt, A. Kallaste, B. Asad, S. Akbar, K. Kudelina, “Inverter-Fed Motor Drive System: A Systematic Analysis of Condition Monitoring and Practical Diagnostic Techniques” Energies, vol. 16, 15, 2023, pp. 5628.
  • [13] F. Obeidat, “A comprehensive review of future photovoltaic systems” Solar Energy, vol. 163, 2018, pp. 545-551.
  • [14] M. Dreidy, H. Mokhlis, S. Mekhilef, “Inertia response and frequency control techniques for renewable energy sources: A review” Renewable and Sustainable Energy Reviews, vol. 69, 2017, pp. 144-155.
  • [15] Y. Slimani, A. Selmi, E. Hannachi, M. A. Almessiere, “Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics” Journal of Materials Science: Materials in Electronics, vol. 30, 10, 2019, pp. 9520-9530.
  • [16] J. Druant, T. Vyncke, F. De Belie, P. Sergeant, J. Melkebeek, “Adding inverter fault detection to model-based predictive control for flying- capacitor inverters” IEEE Transactions on Industrial Electronics, vol. 62, 4, 2014, pp. 2054-2063.
  • [17] Y. Liu, B. Ge, H. Abu-Rub, D. Sun, “Comprehensive modeling of single-phase quasi-Z-source photovoltaic inverter to investigate low- frequency voltage and current ripple” IEEE Transactions on Industrial Electronics, vol. 62, 7, 2014, pp. 4194-4202.
  • [18] A. S. Abbas, R. A. El-Sehiemy, A. Abou El-Ela, E. S. Ali, “Optimal harmonic mitigation in distribution systems with inverter based distributed generation” Applied Sciences, vol. 11, 2, 2021, pp. 765-774.
  • [19] Y. Peng, Y. J. Zhang, D. T. Liu, L. S. Liu, “Degradation estimation using feature increment stepwise linear regression for PWM Inverter of Electro-Mechanical Actuator” Microelectronics Reliability, vol. 88, 2018, pp. 514-518.
  • [20] M. Chen, D. Zhou, F. Blaabjerg, “High penetration of inverter-based power sources with VSG control impact on electromechanical oscillation of power system” International Journal of Electrical Power & Energy Systems, vol. 142, 2022, 108370.
  • [21] X. Guo, Q. Xun, Z. Li, S. Du, “Silicon carbide converters and MEMS devices for high-temperature power electronics: A critical review” Micromachines, vol. 10, 6, 2019, pp. 395-406.
  • [22] I. V. Uvarov, A. N. Kupriyanov, “Stiction-protected MEMS switch with low actuation voltage” Microsystem Technologies, vol. 25, 8, 2019, pp. 3243-3251.
  • [23] N. Gupta, S. Dutta, A. Panchal, I. Yadav, S. Kumar, Y. Parmar, “Design and fabrication of SOI technology based MEMS differential capacitive accelerometer structure” Journal of Materials Science: Materials in Electronics, vol. 30, 16, 2019, pp. 15705-15714.
  • [24] W. Tian, P. Li, L. Yuan, “Research and analysis of MEMS switches in different frequency bands” Micromachines, vol. 9, 4, 2018, pp. 8-15.
  • [25] I. E. Lysenko, A. V. Tkachenko, E. V. Sherova, A. V. Nikitin, “Analytical approach in the development of RF MEMS switches” Electronics, vol. 7, 12, 2018, pp. 395-415.
  • [26] O. Ulkir, I. Ertugrul, N. Akkus, S. Ozer, “Fabrication and experimental study of micro-gripper with electrothermal actuation by stereolithography method. Journal of Materials Engineering and Performance, vol. 31, 10, 2022, pp. 8148-8159.
  • [27] J. Yunas, B. Mulyanti, I. Hamidah, M. Mohd Said, R. E. Pawinanto, “Polymer-based MEMS electromagnetic actuator for biomedical application: a review” Polymers, vol. 12, 5, 2020, pp. 1-18.
  • [28] A. S. Algamili, M. H. M. Khir, J. O. Dennis, A. Y. Ahmed, S. S. Alabsi, “A review of actuation and sensing mechanisms in MEMS-based sensor devices” Nanoscale Research Letters, vol. 16, 1, 2021, pp. 1-21.
  • [29] R. Sangno, R. K. Mehta, S. Maity, “MEMS Based Low Power Efficient Capacitive Inverter for renewable energy applications” IEEE VLSI Circuits and Systems Letter, vol. 5, 2, 2019, pp. 1-9.
  • [30] G. Niu, F. Wang, “A review of MEMS-based metal oxide semiconductors gas sensor in Mainland China” Journal of Micromechanics and Microengineering, vol. 32, 5, 2022, pp. 1-25.
  • [31] I. Vairavasundaram, V. Varadarajan, P. J. Pavankumar, R. K. Kanagavel, L. Ravi, S. Vairavasundaram, S. “A review on small power rating PV inverter topologies and smart PV inverters” Electronics, vol. 10, 11, 2021,pp. 1296.
  • [32] U. Akram, M. Nadarajah, R. Shah, F. Milano, “A review on rapid responsive energy storage technologies for frequency regulation in modern power systems” Renewable and Sustainable Energy Reviews, vol. 120, 2020, pp. 109626.
  • [33] H. Madinei, H. H. Khodaparast, M. I. Friswell, S. Adhikari, “Minimising the effects of manufacturing uncertainties in MEMS energy harvesters” Energy, 149, 2018, pp. 990-999.
  • [34] E. Ranjbar, A. A. Suratgar, “A composite adaptive controller design for 3-DOF MEMS vibratory gyroscopes capable of measuring angular velocity” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 43, 2, 2019, pp. 245-266.
  • [35] A. Mustafazade, M. Pandit, C. Zhao, G. Sobreviela, “A vibrating beam MEMS accelerometer for gravity and seismic measurements” Scientific Reports, vol. 10, 1, 2020, pp. 1-8.
  • [36] K. Tao, J. Miao, S. W. Lye, X. Hu, “Sandwich-structured two- dimensional MEMS electret power generator for low-level ambient vibrational energy harvesting” Sensors and Actuators A: Physical, vol. 228, 2015, pp. 95-103.
  • [37] Y. Wang, H. Chen, B. Gao, X. Xiao, R. Torquato, F. C. Trindade, “Harmonic resonance analysis in high‐renewable‐energy‐penetrated power systems considering frequency coupling” Energy Conversion and Economics, vol. 3, 5, 2022, pp. 333-344.
  • [38] M. A. Haj-ahmed, M. S. Illindala, “The influence of inverter-based DGs and their controllers on distribution network protection” In 2013 IEEE Industry Applications Society Annual Meeting, 2013, pp. 1-9.
  • [39] S. Vidhyadharan, R. Yadav, S. Hariprasad, S. S. Dan, “An advanced adiabatic logic using Gate Overlap Tunnel FET (GOTFET) devices for ultra-low power VLSI sensor applications” Analog Integrated Circuits and Signal Processing, vol. 102, 1, 2020, pp. 111-123.
  • [40] R. Sangno, R. K. Mehta, S. Maity, “Improvement in capacitive performances of efficient micro electro mechanical system (MEMS) based power inverter” Cogent Engineering, vol. 5, 1, 2018, 1455407.
  • [41] R. Sangno, R. K. Mehta, S. Maity, “MEMS Based Low Power Efficient Capacitive Inverter for renewable energy applications” IEEE VLSI Circuits and Systems Letter, vol. 5, 2, 2019, pp. 1-9.
  • [42] H. A. Kloub, E. M. Hamad, “Electromechanical modeling and designing of capacitive MEMS DC/AC interactive power inverter for renewable energy applications” Microsystem Technologies, vol. 23, 4, 2017, pp. 863-874.
Year 2024, Volume: 12 Issue: 2, 127 - 136, 30.08.2024
https://doi.org/10.17694/bajece.1419596

Abstract

References

  • [1] H. Husin, M. Zaki, “A critical review of the integration of renewable energy sources with various Technologies” Protection and Control of Modern Power Systems, vol. 6, 1, 2021, pp. 1-18.
  • [2] B. K. Santhoshi, K. Mohanasundaram, L. A. Kumar, “ANN-based dynamic control and energy management of inverter and battery in a grid-tied hybrid renewable power system fed through switched Z-source converter” Electrical Engineering, vol. 103, 5, 2021, pp. 2285-2301.
  • [3] M. H. Ahmed, M. Wang, M. A. S. Hassan, I. Ullah, “Power loss model and efficiency analysis of three-phase inverter based on SiC MOSFETs for PV applications” IEEE Access, vol. 7, 2019, pp. 75768-75781.
  • [4] P. C. Vratny, H. Kuhn, M. Hornung, “Influences of voltage variations on electric power architectures for hybrid electric aircraft” CEAS Aeronautical Journal, vol. 8, 1, 2017, pp. 31-43.
  • [5] K. J. Chen, O. Häberlen, A. Lidow, “GaN-on-Si power technology: Devices and applications” IEEE Transactions on Electron Devices, vol. 64, 3, 2017, pp. 779-795.
  • [6] O. M. Rodríguez-Benítez, M. Ponce-Silva, J. A. Aquí-Tapia, A. Claudio-Sánchez, “Comparative performance and assessment study of a current-fed dc-dc resonant converter combining si, sic, and gan-based power semiconductor devices” Electronics, vol. 9, 11, 2020, pp. 1-15.
  • [7] T. Kaliannan, J. R. Albert, D. M. Begam, P. Madhumathi, “Power quality improvement in modular multilevel inverter using for different multicarrier PWM” European Journal of Electrical Engineering and Computer Science, vol. 5, 2, 2021, pp. 19-27.
  • [8] M. K. Das, K. C. Jana, A. Sinha “Performance evaluation of an asymmetrical reduced switched multi‐level inverter for a grid‐connected PV system” IET Renewable Power Generation, vol. 12, 2, 2018, pp. 252-263.
  • [9] M. Pichan, H. Rastegar, “Sliding-mode control of four-leg inverter with fixed switching frequency for uninterruptible power supply applications” IEEE Transactions on Industrial Electronics, vol. 64, 8, 2017, pp. 6805-6814.
  • [10] A. Sinha, K. C. Jana, M. K. Das, “An inclusive review on different multi-level inverter topologies, their modulation and control strategies for a grid connected photo-voltaic system” Solar Energy, vol. 170, 2018, pp. 633-657.
  • [11] P. Shah, X. Zhao, “Leakage current mitigation technique in solar PV array system using passive filter” IEEE Transactions on Energy Conversion, vol. 38, 1, 2022, pp. 463-478.
  • [12] M. U. Sardar, T. Vaimann, L. Kütt, A. Kallaste, B. Asad, S. Akbar, K. Kudelina, “Inverter-Fed Motor Drive System: A Systematic Analysis of Condition Monitoring and Practical Diagnostic Techniques” Energies, vol. 16, 15, 2023, pp. 5628.
  • [13] F. Obeidat, “A comprehensive review of future photovoltaic systems” Solar Energy, vol. 163, 2018, pp. 545-551.
  • [14] M. Dreidy, H. Mokhlis, S. Mekhilef, “Inertia response and frequency control techniques for renewable energy sources: A review” Renewable and Sustainable Energy Reviews, vol. 69, 2017, pp. 144-155.
  • [15] Y. Slimani, A. Selmi, E. Hannachi, M. A. Almessiere, “Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics” Journal of Materials Science: Materials in Electronics, vol. 30, 10, 2019, pp. 9520-9530.
  • [16] J. Druant, T. Vyncke, F. De Belie, P. Sergeant, J. Melkebeek, “Adding inverter fault detection to model-based predictive control for flying- capacitor inverters” IEEE Transactions on Industrial Electronics, vol. 62, 4, 2014, pp. 2054-2063.
  • [17] Y. Liu, B. Ge, H. Abu-Rub, D. Sun, “Comprehensive modeling of single-phase quasi-Z-source photovoltaic inverter to investigate low- frequency voltage and current ripple” IEEE Transactions on Industrial Electronics, vol. 62, 7, 2014, pp. 4194-4202.
  • [18] A. S. Abbas, R. A. El-Sehiemy, A. Abou El-Ela, E. S. Ali, “Optimal harmonic mitigation in distribution systems with inverter based distributed generation” Applied Sciences, vol. 11, 2, 2021, pp. 765-774.
  • [19] Y. Peng, Y. J. Zhang, D. T. Liu, L. S. Liu, “Degradation estimation using feature increment stepwise linear regression for PWM Inverter of Electro-Mechanical Actuator” Microelectronics Reliability, vol. 88, 2018, pp. 514-518.
  • [20] M. Chen, D. Zhou, F. Blaabjerg, “High penetration of inverter-based power sources with VSG control impact on electromechanical oscillation of power system” International Journal of Electrical Power & Energy Systems, vol. 142, 2022, 108370.
  • [21] X. Guo, Q. Xun, Z. Li, S. Du, “Silicon carbide converters and MEMS devices for high-temperature power electronics: A critical review” Micromachines, vol. 10, 6, 2019, pp. 395-406.
  • [22] I. V. Uvarov, A. N. Kupriyanov, “Stiction-protected MEMS switch with low actuation voltage” Microsystem Technologies, vol. 25, 8, 2019, pp. 3243-3251.
  • [23] N. Gupta, S. Dutta, A. Panchal, I. Yadav, S. Kumar, Y. Parmar, “Design and fabrication of SOI technology based MEMS differential capacitive accelerometer structure” Journal of Materials Science: Materials in Electronics, vol. 30, 16, 2019, pp. 15705-15714.
  • [24] W. Tian, P. Li, L. Yuan, “Research and analysis of MEMS switches in different frequency bands” Micromachines, vol. 9, 4, 2018, pp. 8-15.
  • [25] I. E. Lysenko, A. V. Tkachenko, E. V. Sherova, A. V. Nikitin, “Analytical approach in the development of RF MEMS switches” Electronics, vol. 7, 12, 2018, pp. 395-415.
  • [26] O. Ulkir, I. Ertugrul, N. Akkus, S. Ozer, “Fabrication and experimental study of micro-gripper with electrothermal actuation by stereolithography method. Journal of Materials Engineering and Performance, vol. 31, 10, 2022, pp. 8148-8159.
  • [27] J. Yunas, B. Mulyanti, I. Hamidah, M. Mohd Said, R. E. Pawinanto, “Polymer-based MEMS electromagnetic actuator for biomedical application: a review” Polymers, vol. 12, 5, 2020, pp. 1-18.
  • [28] A. S. Algamili, M. H. M. Khir, J. O. Dennis, A. Y. Ahmed, S. S. Alabsi, “A review of actuation and sensing mechanisms in MEMS-based sensor devices” Nanoscale Research Letters, vol. 16, 1, 2021, pp. 1-21.
  • [29] R. Sangno, R. K. Mehta, S. Maity, “MEMS Based Low Power Efficient Capacitive Inverter for renewable energy applications” IEEE VLSI Circuits and Systems Letter, vol. 5, 2, 2019, pp. 1-9.
  • [30] G. Niu, F. Wang, “A review of MEMS-based metal oxide semiconductors gas sensor in Mainland China” Journal of Micromechanics and Microengineering, vol. 32, 5, 2022, pp. 1-25.
  • [31] I. Vairavasundaram, V. Varadarajan, P. J. Pavankumar, R. K. Kanagavel, L. Ravi, S. Vairavasundaram, S. “A review on small power rating PV inverter topologies and smart PV inverters” Electronics, vol. 10, 11, 2021,pp. 1296.
  • [32] U. Akram, M. Nadarajah, R. Shah, F. Milano, “A review on rapid responsive energy storage technologies for frequency regulation in modern power systems” Renewable and Sustainable Energy Reviews, vol. 120, 2020, pp. 109626.
  • [33] H. Madinei, H. H. Khodaparast, M. I. Friswell, S. Adhikari, “Minimising the effects of manufacturing uncertainties in MEMS energy harvesters” Energy, 149, 2018, pp. 990-999.
  • [34] E. Ranjbar, A. A. Suratgar, “A composite adaptive controller design for 3-DOF MEMS vibratory gyroscopes capable of measuring angular velocity” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 43, 2, 2019, pp. 245-266.
  • [35] A. Mustafazade, M. Pandit, C. Zhao, G. Sobreviela, “A vibrating beam MEMS accelerometer for gravity and seismic measurements” Scientific Reports, vol. 10, 1, 2020, pp. 1-8.
  • [36] K. Tao, J. Miao, S. W. Lye, X. Hu, “Sandwich-structured two- dimensional MEMS electret power generator for low-level ambient vibrational energy harvesting” Sensors and Actuators A: Physical, vol. 228, 2015, pp. 95-103.
  • [37] Y. Wang, H. Chen, B. Gao, X. Xiao, R. Torquato, F. C. Trindade, “Harmonic resonance analysis in high‐renewable‐energy‐penetrated power systems considering frequency coupling” Energy Conversion and Economics, vol. 3, 5, 2022, pp. 333-344.
  • [38] M. A. Haj-ahmed, M. S. Illindala, “The influence of inverter-based DGs and their controllers on distribution network protection” In 2013 IEEE Industry Applications Society Annual Meeting, 2013, pp. 1-9.
  • [39] S. Vidhyadharan, R. Yadav, S. Hariprasad, S. S. Dan, “An advanced adiabatic logic using Gate Overlap Tunnel FET (GOTFET) devices for ultra-low power VLSI sensor applications” Analog Integrated Circuits and Signal Processing, vol. 102, 1, 2020, pp. 111-123.
  • [40] R. Sangno, R. K. Mehta, S. Maity, “Improvement in capacitive performances of efficient micro electro mechanical system (MEMS) based power inverter” Cogent Engineering, vol. 5, 1, 2018, 1455407.
  • [41] R. Sangno, R. K. Mehta, S. Maity, “MEMS Based Low Power Efficient Capacitive Inverter for renewable energy applications” IEEE VLSI Circuits and Systems Letter, vol. 5, 2, 2019, pp. 1-9.
  • [42] H. A. Kloub, E. M. Hamad, “Electromechanical modeling and designing of capacitive MEMS DC/AC interactive power inverter for renewable energy applications” Microsystem Technologies, vol. 23, 4, 2017, pp. 863-874.
There are 42 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Araştırma Articlessi
Authors

Salih Rahmi Turan 0000-0001-5826-0786

Osman Ülkir 0000-0002-1095-0160

Melih Kuncan 0000-0002-9749-0418

Early Pub Date October 17, 2024
Publication Date August 30, 2024
Submission Date January 14, 2024
Acceptance Date March 17, 2024
Published in Issue Year 2024 Volume: 12 Issue: 2

Cite

APA Turan, S. R., Ülkir, O., & Kuncan, M. (2024). Design and Analysis of MEMS-Based Capacitive Power Inverter Using Electrostatic Transduction. Balkan Journal of Electrical and Computer Engineering, 12(2), 127-136. https://doi.org/10.17694/bajece.1419596

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı