Research Article
BibTex RIS Cite
Year 2024, Volume: 12 Issue: 3, 240 - 246, 30.09.2024
https://doi.org/10.17694/bajece.1515244

Abstract

Project Number

FEN-BAP-A-290224-34

References

  • [1] Global Wind Energy Council, "Global wind statistics," 2024. [Online]. Available: https://gwec.net/global-wind-report-2024/
  • [2] Wisevoter. "Wind Power by Country." https://wisevoter.com/country-rankings/wind-power-by-country/#turkey (accessed 27.06.2024).
  • [3] TEİAŞ, "2023 Kasım Ayı Kurulu Güç Raporu," 2023.
  • [4] REPA. "Türkiye Rüzgar Enerjisi Potansiyeli." https://repa.enerji.gov.tr/REPA/ (accessed 27.06.2024).
  • [5] E. Atlası. "Rüzgar Enerji Santralleri." https://www.enerjiatlasi.com/ruzgar/ (accessed 27.06.2024).
  • [6] C. Sun, Z. Bie, M. Xie, and J. Jiang, "Assessing wind curtailment under different wind capacity considering the possibilistic uncertainty of wind resources," Electric Power Systems Research, vol. 132, pp. 39-46, 2016/03/01/ 2016, doi: https://doi.org/10.1016/j.epsr.2015.10.028.
  • [7] G.-l. Luo, Y.-l. Li, W.-j. Tang, and X. Wei, "Wind curtailment of China׳s wind power operation: Evolution, causes and solutions," Renewable and Sustainable Energy Reviews, vol. 53, pp. 1190-1201, 2016/01/01/ 2016, doi: https://doi.org/10.1016/j.rser.2015.09.075.
  • [8] O. Akar, Ü. K. Terzi, B. K. Tunçalp, and T. Sönmezocak, "Determination of the optimum Hybrid renewable power system: a case study of Istanbul Gedik University Gedik Vocational School," Balkan Journal of Electrical and Computer Engineering, vol. 7, no. 4, pp. 456-463, 2019.
  • [9] W. Zhang, L. Zhang, J. Wang, and X. Niu, "Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting," Applied Energy, vol. 277, p. 115561, 2020/11/01/ 2020, doi: https://doi.org/10.1016/j.apenergy.2020.115561.
  • [10] Ş. Fidan, "Wind Energy Forecasting Based on Grammatical Evolution," European Journal of Technique (EJT), vol. 14, no. 1, pp. 23-30.
  • [11] A. Costa, A. Crespo, J. Navarro, G. Lizcano, H. Madsen, and E. Feitosa, "A review on the young history of the wind power short-term prediction," Renewable and Sustainable Energy Reviews, vol. 12, no. 6, pp. 1725-1744, 2008.
  • [12] M. Şen and M. Özcan, "Maximum wind speed forecasting using historical data and artificial neural networks modeling," International Journal of Energy Applications and Technologies, vol. 8, no. 1, pp. 6-11, 2021.
  • [13] İ. Kırbaş, "İstatistiksel metotlar ve yapay sinir ağları kullanarak kısa dönem çok adımlı rüzgâr hızı tahmini," Sakarya University Journal of Science, vol. 22, no. 1, pp. 24-38, 2018.
  • [14] A. Demirtop and A. H. Işık, "Yapay Sinir Ağları ile Rüzgâr Enerji Verimliliğine Yönelik Yeni Bir Tahmin Yaklaşımı: Çanakkale ili Bozcaada Örneği," Uluslararası Mühendislik Tasarım ve Teknoloji Dergisi, vol. 5, no. 1-2, pp. 25-32, 2023.
  • [15] H. Calik, N. Ak, and I. Guney, "Artificial NARX Neural Network Model of Wind Speed: Case of Istanbul-Avcilar," Journal of Electrical Engineering & Technology, vol. 16, no. 5, pp. 2553-2560, 2021/09/01 2021, doi: 10.1007/s42835-021-00763-z.
  • [16] C. Emeksiz and M. Tan, "Geliştirilmiş EEMD-EWT Tabanlı Yapay Sinir Ağı Modeli Kullanarak Çok Adımlı Rüzgar Hızı Tahmini," Avrupa Bilim ve Teknoloji Dergisi, no. 26, pp. 165-173, 2021.
  • [17] M. R. Minaz, "Bilecik ilinin uyarlanır sinir bulanık çıkarım sistemi ile basınç, sıcaklık ve rüzgar hızı tahmini," Bilecik Üniversitesi, Fen Bilimleri Enstitüsü, 2011.
  • [18] E. Dikmen and F. K. Örgen, "AĞLASUN BÖLGESİ İÇİN RÜZGÂR HIZI TAHMİNİ VE EN UYGUN TÜRBİN TESPİTİ," Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 7, no. 2, pp. 871-879, 2018.
  • [19] Z. N. Kiriş, Ö. F. Beyca, and F. Kosanoğlu, "Tekrarlayan Sinir Ağları Temelli Rüzgâr Hızı Tahmin Modelleri: Yalova Bölgesinde Bir Uygulama," Journal of Intelligent Systems: Theory and Applications, vol. 5, no. 2, pp. 178-188, 2022.
  • [20] P. Gipe, "Wind power," Wind Engineering, vol. 28, no. 5, pp. 629-631, 2004.
  • [21] J. Zou, Y. Han, and S.-S. So, "Overview of artificial neural networks," Artificial neural networks: methods and applications, pp. 14-22, 2009.
  • [22] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt. Ltd., 2009.
  • [23] K. L. Priddy and P. E. Keller, Artificial neural networks: an introduction. SPIE press, 2005.
  • [24] D. Graupe, Principles of artificial neural networks. World Scientific, 2013.
  • [25] N. Karayiannis and A. N. Venetsanopoulos, Artificial neural networks: learning algorithms, performance evaluation, and applications. Springer Science & Business Media, 2013.

Average Wind Speed Prediction in Giresun-Kümbet Plateau Region with Artificial Neural Networks

Year 2024, Volume: 12 Issue: 3, 240 - 246, 30.09.2024
https://doi.org/10.17694/bajece.1515244

Abstract

In order to estimate the electricity generation capacity and schedule the supply for vendor needs, wind speed prediction is crucial for wind power plant frameworks. Prior to the installation of the wind power plants, a reliable wind behaviour model is neccesary. To have such a model, wind data is recorded periodically. In this study, hourly recorded meteorological data of actual pressure, relative humidity, temperature, wind direction and average wind speed for the year 2023 were obtained from the General Directorate of Meteorology for the Kümbet plateau region of Giresun province. The data is used to accurately predict the future wind speed for the region. Matlab Artificial Neural Networks (ANN) is utilized. Actual pressure, relative humidity, temperature and wind direction parameters are defined as input in the prediction process. 85% of the data set is used as training data and remainin 15% data set is used for testing data. An optimization process is applied to determine the number of hidden layers to have the prediction value with the smallest error. Bayesian Regularization training process was performed by seeing that the hidden layer has the lowest error at 90 neurons. Performance evaluations are performed with Mean Square Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Pearson Correlation Coefficient (R) metrics. The values of the metrics for the test data are 26.7137, 5.1685, 3.5055 and 0.7457 respectively. The results show that, ANN based model is useful for the wind speed prediction over the region.

Supporting Institution

Giresun University

Project Number

FEN-BAP-A-290224-34

References

  • [1] Global Wind Energy Council, "Global wind statistics," 2024. [Online]. Available: https://gwec.net/global-wind-report-2024/
  • [2] Wisevoter. "Wind Power by Country." https://wisevoter.com/country-rankings/wind-power-by-country/#turkey (accessed 27.06.2024).
  • [3] TEİAŞ, "2023 Kasım Ayı Kurulu Güç Raporu," 2023.
  • [4] REPA. "Türkiye Rüzgar Enerjisi Potansiyeli." https://repa.enerji.gov.tr/REPA/ (accessed 27.06.2024).
  • [5] E. Atlası. "Rüzgar Enerji Santralleri." https://www.enerjiatlasi.com/ruzgar/ (accessed 27.06.2024).
  • [6] C. Sun, Z. Bie, M. Xie, and J. Jiang, "Assessing wind curtailment under different wind capacity considering the possibilistic uncertainty of wind resources," Electric Power Systems Research, vol. 132, pp. 39-46, 2016/03/01/ 2016, doi: https://doi.org/10.1016/j.epsr.2015.10.028.
  • [7] G.-l. Luo, Y.-l. Li, W.-j. Tang, and X. Wei, "Wind curtailment of China׳s wind power operation: Evolution, causes and solutions," Renewable and Sustainable Energy Reviews, vol. 53, pp. 1190-1201, 2016/01/01/ 2016, doi: https://doi.org/10.1016/j.rser.2015.09.075.
  • [8] O. Akar, Ü. K. Terzi, B. K. Tunçalp, and T. Sönmezocak, "Determination of the optimum Hybrid renewable power system: a case study of Istanbul Gedik University Gedik Vocational School," Balkan Journal of Electrical and Computer Engineering, vol. 7, no. 4, pp. 456-463, 2019.
  • [9] W. Zhang, L. Zhang, J. Wang, and X. Niu, "Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting," Applied Energy, vol. 277, p. 115561, 2020/11/01/ 2020, doi: https://doi.org/10.1016/j.apenergy.2020.115561.
  • [10] Ş. Fidan, "Wind Energy Forecasting Based on Grammatical Evolution," European Journal of Technique (EJT), vol. 14, no. 1, pp. 23-30.
  • [11] A. Costa, A. Crespo, J. Navarro, G. Lizcano, H. Madsen, and E. Feitosa, "A review on the young history of the wind power short-term prediction," Renewable and Sustainable Energy Reviews, vol. 12, no. 6, pp. 1725-1744, 2008.
  • [12] M. Şen and M. Özcan, "Maximum wind speed forecasting using historical data and artificial neural networks modeling," International Journal of Energy Applications and Technologies, vol. 8, no. 1, pp. 6-11, 2021.
  • [13] İ. Kırbaş, "İstatistiksel metotlar ve yapay sinir ağları kullanarak kısa dönem çok adımlı rüzgâr hızı tahmini," Sakarya University Journal of Science, vol. 22, no. 1, pp. 24-38, 2018.
  • [14] A. Demirtop and A. H. Işık, "Yapay Sinir Ağları ile Rüzgâr Enerji Verimliliğine Yönelik Yeni Bir Tahmin Yaklaşımı: Çanakkale ili Bozcaada Örneği," Uluslararası Mühendislik Tasarım ve Teknoloji Dergisi, vol. 5, no. 1-2, pp. 25-32, 2023.
  • [15] H. Calik, N. Ak, and I. Guney, "Artificial NARX Neural Network Model of Wind Speed: Case of Istanbul-Avcilar," Journal of Electrical Engineering & Technology, vol. 16, no. 5, pp. 2553-2560, 2021/09/01 2021, doi: 10.1007/s42835-021-00763-z.
  • [16] C. Emeksiz and M. Tan, "Geliştirilmiş EEMD-EWT Tabanlı Yapay Sinir Ağı Modeli Kullanarak Çok Adımlı Rüzgar Hızı Tahmini," Avrupa Bilim ve Teknoloji Dergisi, no. 26, pp. 165-173, 2021.
  • [17] M. R. Minaz, "Bilecik ilinin uyarlanır sinir bulanık çıkarım sistemi ile basınç, sıcaklık ve rüzgar hızı tahmini," Bilecik Üniversitesi, Fen Bilimleri Enstitüsü, 2011.
  • [18] E. Dikmen and F. K. Örgen, "AĞLASUN BÖLGESİ İÇİN RÜZGÂR HIZI TAHMİNİ VE EN UYGUN TÜRBİN TESPİTİ," Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 7, no. 2, pp. 871-879, 2018.
  • [19] Z. N. Kiriş, Ö. F. Beyca, and F. Kosanoğlu, "Tekrarlayan Sinir Ağları Temelli Rüzgâr Hızı Tahmin Modelleri: Yalova Bölgesinde Bir Uygulama," Journal of Intelligent Systems: Theory and Applications, vol. 5, no. 2, pp. 178-188, 2022.
  • [20] P. Gipe, "Wind power," Wind Engineering, vol. 28, no. 5, pp. 629-631, 2004.
  • [21] J. Zou, Y. Han, and S.-S. So, "Overview of artificial neural networks," Artificial neural networks: methods and applications, pp. 14-22, 2009.
  • [22] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt. Ltd., 2009.
  • [23] K. L. Priddy and P. E. Keller, Artificial neural networks: an introduction. SPIE press, 2005.
  • [24] D. Graupe, Principles of artificial neural networks. World Scientific, 2013.
  • [25] N. Karayiannis and A. N. Venetsanopoulos, Artificial neural networks: learning algorithms, performance evaluation, and applications. Springer Science & Business Media, 2013.
There are 25 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Araştırma Articlessi
Authors

Ferdi Özbilgin 0000-0003-4946-7018

Hüseyin Çalık 0000-0001-8298-8945

Mehmet Cem Dikbaş 0000-0003-4525-7996

Project Number FEN-BAP-A-290224-34
Early Pub Date October 24, 2024
Publication Date September 30, 2024
Submission Date July 12, 2024
Acceptance Date September 23, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Özbilgin, F., Çalık, H., & Dikbaş, M. C. (2024). Average Wind Speed Prediction in Giresun-Kümbet Plateau Region with Artificial Neural Networks. Balkan Journal of Electrical and Computer Engineering, 12(3), 240-246. https://doi.org/10.17694/bajece.1515244

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı