Research Article
BibTex RIS Cite

Fen Bilimleri Öğretmenlerinin Derslerinde STEM Odaklı Etkinlikler Gerçekleştirmek Üzere Geliştirdikleri Problem Durumlarının İncelenmesi

Year 2018, Volume: 12 Issue: 2, 487 - 507, 31.12.2018
https://doi.org/10.17522/balikesirnef.506462

Abstract

Bu araştırmada
fen derslerinde STEM entegrasyonu gerçekleştirmek üzere 15 Fen bilimleri
öğretmenine 30 saatlik eğitim verilmiş ve eğitim sonunda STEM eğitim anlayışına
yönelik bu programa katılmış fen bilimleri öğretmenlerinin ortaya koydukları
problem durumlarının incelenmesi amaçlanmıştır. Araştırmanın modeli bütüncül
tek durum çalışmasıdır. Araştırmanın çalışma grubunu 15 fen bilimleri öğretmeni
oluşturmaktadır. Eğitim sonunda katılımcılardan fen bilimleri dersini STEM odaklı
etkinlik kapsamında planlamak üzere programdan kendilerinin seçecekleri
kazanımlar ile ilgili bireysel olarak problem durumları oluşturması
istenmiştir. Öğretmenlerin oluşturdukları problem durumlarına yönelik
dokümanlar ve öğretmenler problem durumlarını oluştururken araştırmacılar tarafından
tutulan alan notları araştırmanın veri kaynağıdır. Dokümanlar betimsel analiz,
alan notları ise içerik analizi ve betimsel analiz teknikleri ile analiz
edilmiştir. Öğretmenlerin çoğunlukla problem dayalı öğrenme ekseninde
yürütülecek problem durumları planlamayı tercih ettikleri tespit edilmiştir.
Mühendislik tasarım problemi hazırlayan öğretmenlerden sadece birinin tüm unsurlar
bakımından kabul edilebilir problem durumu oluşturabildiği tespit edilmiştir.
Fen derslerinde STEM odaklı uygulamalar gerçekleştirmek üzere probleme dayalı
uygulamalar planlayan öğretmenler tüm ölçütleri karşılayacak problem durumu
oluşturamamışlardır. 

References

  • Arafah, M. M. (2011). But what does this have to do with science? Building the case for engineering in K-12 (Master Thesis). Cleveland State University, United States.
  • Bozkurt Altan, E. (2017). Fen, teknoloji, mühendislik ve matematik (FeTeMM-STEM) eğitimi. Hastürk, H. G. (Ed.), Teoriden pratiğe fen bilimleri öğretimi (s. 354-388). Ankara: Pegem Yayıncılık.
  • Bozkurt Altan, E., & Ercan, S. (2016). STEM Education program for science teachers: perceptions and competencies. Journal of Turkish Science Education, 13(Special issue), 103- 117.
  • Bracey, G., Brooks, M., Marlette, S., & Locke, S. (2013). Teachers in training: Building formal STEM teaching efficacy through informal science teaching experience. ASQ Advancing the STEM Agenda Conference.
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.
  • Brunsell, E. (2012). The engineering design process. Brunsell, E. (Ed.) Integrating engineering + science in your classroom (pp. 3-7). Arlington, Virginia: National Science Teacher Association [NSTA] Press.
  • Bryan, L. A., Moore, T. J., Johnson, C., & Roehrig, G. (2015). Integrated STEM education. In C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). New York, NY: Routledge.
  • Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30-35.
  • Capobianco, B. M. (2011). Exploring a science teacher’s uncertainty with integrating engineering design: an action research study. Journal of Science Teacher Education, 22, 645-660.
  • Capobianco, B. M. (2013). Learning and teaching science through engineering design: insights and implications for professional development. Association for Science Teacher Education, Charleston, SC.
  • Chiu, A., Price, A. C., & Ovrahim, E. (2015, April). Supporting elementary and middle school STEM education. NARST 2015 Annual Conference, Chicago.
  • Duch, B. J., Groh, S. E., & Allen, D. E. (2001). Why problem-based learning? A case study of institutional change in undergraduate education. In B. Duch, S. Groh, & D. Allen (Eds.), The power of problem-based learning (pp. 3-11). Sterling, VA: Stylus.
  • Dugger, W. (2010). Evolution of STEM in the united states. In Technology Education Research Conference, Queensland
  • English, L. D., & King, D. (2018). STEM integration in sixth grade: desligning and constructing paper bridges. International Journal of Science and Mathematics. July, 1-22. https://doi.org/10.1007/s10763-018-9912-0
  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(3), 1-8. https://doi.org/10.1186/s40594-016-0036-1.
  • English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15(1), 5-24.
  • Glesne, C. (2013). Nitel araştırmaya giriş (A. Ersoy, çev.). Ankara: Anı Yayıncılık.
  • Guzey, S. S., Ring-Whalen, E. A., Harwell, M., & Peralta, Y. (2017). Life STEM: A case study of life science learning through engineering design. International Journal of Science and Mathematics Education, October. https://doi.org/10.1007/s10763-017-9860-0
  • Hacıoğlu, Y., Yamak, H., & Kavak, N. (2016). Mühendislik tasarım temelli fen eğitimi ile ilgili öğretmen görüşleri. Bartın Üniversitesi Eğitim Fakültesi Dergisi, 5(3), 807.
  • Hacıoğlu,Y., Yamak, H. & Kavak, N. (2017). The opinions of prospective science teachers regarding STEM education: The engineering design based science education. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 37(2): 649-684
  • Han, S., Yalvac, B., Capraro, M. M., & Capraro, M.R. (2015). In-service teachers' implementation of and understanding from project-based learning (PBL) in science, technology, engineering, and mathematics (STEM) project-based learning, Eurasia Journal of Mathematics, Science ve Technology Education, 11(1), 63-76.
  • Hmelo, C. E., Holton,D., & Kolodner, J. L. (2000). Designing to learn about complex systems. The Journal of the Learning Sciences, 9(3), 247–298.
  • Honey, M., Pearson, G., & Schweingruber, H. (Eds). (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. National Academy of Engineering and National Research Council. Washington D.C.: The National Academies Press.
  • Hung, W. (2009). The 9-step problem design process for problem-based learning: Application of the 3C3R model. Educational Research Review, 4(2), 118-141.
  • Hung, W., Jonasse,n, D. H., & Liu, R. (2008). Problem-based learning. In J. M. Spector, J. G. van Merrienboer, M. D., Merrill, & M. Driscoll (Eds.), Handbook of research on educational communications and technology (pp. 485-506) 3rd Ed.. New York: Lawrence Erlbaum Associates.
  • Johnson, C. C. (2012). Letter from the editor: Four key premises of STEM. School Science and Mathematics, 112(1), 1-2.
  • Kınık Topalsan, A. (2018). Sınıf öğretmenliği öğretmen adaylarının geliştirdikleri mühendislik tasarım temelli fen öğretim etkinliklerinin değerlendirilmesi. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi (YYU Journal of Education Faculty),15(1), 186-219.
  • Kolodner, J. L. (2002). Facilitating the learning of design practices: lessons learned from an inquiry into science education. Journal of Industrial Teacher Education, 39(3), 1-28.
  • Leonard, M. J. (2004). Toward epistemologically authentic engineering design activities in the science classroom. National Association for Research in Science Teaching, Vancouver, B.C.
  • Lewis, T. (2006). Design and inquiry: bases for an accommodation between science and technology education in the curriculum?. Journal of Research in Science Teaching, 43(3), 255-281.
  • Marulcu, İ. (2010). Investigating the impact of a lego-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders’ content learning of simple machines (Doctoral dissertation). Lynch School of Education, Boston College
  • Mehalik, M., Doppelt, Y., & Schunn, C. D. (2008). Middle school science through design based learning versus scripted inquiry: better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 71-85.
  • Meng, C. C., Idris, N., & Eu, L. K. (2014). Secondary students' perceptions of assessments in science, technology, engineering, and mathematics (STEM). Eurasia Journal of Mathematics, Science and Technology Education, 10(3), 219-227.
  • Milli Eğitim Bakanlığı [MEB], (2018). Fen Bilimleri Dersi Öğretim Programı. http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=325
  • Moore, T. J., & Smith, K. A. (2014). Advancing the state of the art of STEM integration. Journal of STEM Education, 15(1), 5–10.
  • Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In Engineering in Pre-College Settings: Synthesizing Research, Policy, and Practices (pp. 35-60). Purdue University Press.
  • Morrison, J. (2006). TIES STEM education monograph series, attributes of STEM education. Teaching Institute for Essential Science. Retrieved from https://www.partnersforpubliced.org
  • Nadelson, L.S., Callahan, J., Pyke, P., Hay, A., & Schrader, C. (2009, June). A systemic solution: Elementary-teacher preparation in STEM expertise and engineering awareness. Proceedings of the American Society for Engineering Education Annual Conference & Exhibition, Austin, TX.
  • Nathan, M. J., Srisurichan, R., Walkington, C., Wolfgram, M., Williams, C., & Alibali, M. W. (2013). Building cohesion across representations: a mechanism for stem integration. Journal of Engineering Education, 102(1), 77-116.
  • National Academy of Engineering [NAE] & National Research Council [NRC]. (2009). Engineering in K-12 education understanding the status and improving the prospects. Edt. Katehi, L., Pearson, G. & Feder, M. Washington, DC: National Academies Press.
  • National Research Council [NRC]. (2012). A Framework for k-12 science education: practices, crosscutting concepts, and core ideas. Washington DC: The National Academic Press.
  • Park, D., Park, M., & Bates, A. (2018). Exploring young children’s understanding about the concept of volume through engineering design in a STEM activity: A case study. International Journal of Science and Mathematics Education, 16(2), 275-294.
  • Peterman, K., Daugherty, J. L., Custer, R. L., & Ross, J. M. (2017). Analysing the integration of engineering in science lessons with the engineering-infused lesson rubric. International Journal of Science Education, 39(14), 1913–1931.
  • Ramsay, J. & Sorrell, E. (2006). Problem-based learning: a novel approach to teaching safety, health and environmental courses. Journal of SH&E Research, 3(2), 2-8.
  • Sadler, P. M., Coyle, H. P. & Schwartz, M. (2000). Engineering competitions in the middle school classroom: Key elements in developing effective design challenges. The Journal of the Learning Sciences, 9, 299–327.
  • Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4): 20-26.
  • Shaughnessy, M. (2013). By way of introduction: Mathematics in a STEM context. Mathematics Teaching in the Middle school, 18(6), 324.
  • Sungur Gül, K. & Marulcu, İ. (2014). Yöntem olarak mühendislik-dizayna ve ders materyali olarak legolara öğretmen ile öğretmen adaylarının bakış açılarının incelenmesi. International Periodical for The Languages, Literature and History of Turkish or Turkic, 9(2), 761-786.
  • Üçüncüoğlu, İ. (2018). Fen bi̇lgi̇si̇ öğretmen adaylarina yöneli̇k stem odaklı laboratuvar uygulamalarının tasarlanması ve etki̇li̇li̇ği̇ni̇n araştırılması (Yayımlanmamış Yüksek Lisans Tezi). Sinop Üniversitesi, Eğitim Bilimleri Enstitüsü, Sinop.
  • Wang, H. H., Moore, T. J., Roehrig, G. H. & Park, M. S. (2011). STEM integration: teacher perceptions and practice. Journal of Pre-College Engineering Education Research, 1(2), 1–13.
  • Wendell, K. B. (2008). The theoretical and empirical basis for design-based science instruction for children. Qualifying Paper, Tufts University.
  • Wendell, K. B., & Kolodner, J. L. (2014). Learning disciplinary ideas and practices through engineering design. In A. Johri & B. M. Olds (Eds.), Cambridge handbook of engineering education research (pp. 243–263). New York, NY: Cambridge University Press.
  • Wendell, K. B., Connolly, K. G., Wright, C. G., Jarvin, L., Rogers, C., Barnett, M., & Marulcu, I. (2010). Incorporating engineering design into elementary school science curricula. American Society for Engineering Education Annual Conference & Exposition, Louisville, KY.
  • Williams, J. (2011). STEM education: Proceed with caution. Design and Technology Education, 16(1), 26-35.
  • Yin R. K. (2009). Case study research: Design and methods (4th ed.). California: SAGE Pub. Thousand Oaks.

Investigation of Problem Statement Developed by Science Teachers to Perform STEM Focused Activities in Their Courses

Year 2018, Volume: 12 Issue: 2, 487 - 507, 31.12.2018
https://doi.org/10.17522/balikesirnef.506462

Abstract

In
this study, 30 hours of training were given to 15 science teachers to realize
STEM integration in science courses and it was aimed to examine the problem
statement developed by science teachers who have STEM education. The model of
the research is a holistic case study. The study group of the research is
composed of 15 science teachers. Problem statements (documents) that the
teachers developed constitute the primary data source of this research. Field
notes were used as supporting data sources. Data analyzed by descriptive
(documents, field notes) and content analysis (field notes) techniques. It has
been determined that the engineering design problem, prepared by only one
teacher, can be accepted in all elements, and that it is capable of integrating
mathematics and technology disciplines and achieving learning outcome in
science courses. It has been found that none of the problem statements prepared
by problem-based learning to perform STEM-focused activities in science courses
are inappropriate for all elements. 

References

  • Arafah, M. M. (2011). But what does this have to do with science? Building the case for engineering in K-12 (Master Thesis). Cleveland State University, United States.
  • Bozkurt Altan, E. (2017). Fen, teknoloji, mühendislik ve matematik (FeTeMM-STEM) eğitimi. Hastürk, H. G. (Ed.), Teoriden pratiğe fen bilimleri öğretimi (s. 354-388). Ankara: Pegem Yayıncılık.
  • Bozkurt Altan, E., & Ercan, S. (2016). STEM Education program for science teachers: perceptions and competencies. Journal of Turkish Science Education, 13(Special issue), 103- 117.
  • Bracey, G., Brooks, M., Marlette, S., & Locke, S. (2013). Teachers in training: Building formal STEM teaching efficacy through informal science teaching experience. ASQ Advancing the STEM Agenda Conference.
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.
  • Brunsell, E. (2012). The engineering design process. Brunsell, E. (Ed.) Integrating engineering + science in your classroom (pp. 3-7). Arlington, Virginia: National Science Teacher Association [NSTA] Press.
  • Bryan, L. A., Moore, T. J., Johnson, C., & Roehrig, G. (2015). Integrated STEM education. In C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). New York, NY: Routledge.
  • Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30-35.
  • Capobianco, B. M. (2011). Exploring a science teacher’s uncertainty with integrating engineering design: an action research study. Journal of Science Teacher Education, 22, 645-660.
  • Capobianco, B. M. (2013). Learning and teaching science through engineering design: insights and implications for professional development. Association for Science Teacher Education, Charleston, SC.
  • Chiu, A., Price, A. C., & Ovrahim, E. (2015, April). Supporting elementary and middle school STEM education. NARST 2015 Annual Conference, Chicago.
  • Duch, B. J., Groh, S. E., & Allen, D. E. (2001). Why problem-based learning? A case study of institutional change in undergraduate education. In B. Duch, S. Groh, & D. Allen (Eds.), The power of problem-based learning (pp. 3-11). Sterling, VA: Stylus.
  • Dugger, W. (2010). Evolution of STEM in the united states. In Technology Education Research Conference, Queensland
  • English, L. D., & King, D. (2018). STEM integration in sixth grade: desligning and constructing paper bridges. International Journal of Science and Mathematics. July, 1-22. https://doi.org/10.1007/s10763-018-9912-0
  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(3), 1-8. https://doi.org/10.1186/s40594-016-0036-1.
  • English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15(1), 5-24.
  • Glesne, C. (2013). Nitel araştırmaya giriş (A. Ersoy, çev.). Ankara: Anı Yayıncılık.
  • Guzey, S. S., Ring-Whalen, E. A., Harwell, M., & Peralta, Y. (2017). Life STEM: A case study of life science learning through engineering design. International Journal of Science and Mathematics Education, October. https://doi.org/10.1007/s10763-017-9860-0
  • Hacıoğlu, Y., Yamak, H., & Kavak, N. (2016). Mühendislik tasarım temelli fen eğitimi ile ilgili öğretmen görüşleri. Bartın Üniversitesi Eğitim Fakültesi Dergisi, 5(3), 807.
  • Hacıoğlu,Y., Yamak, H. & Kavak, N. (2017). The opinions of prospective science teachers regarding STEM education: The engineering design based science education. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 37(2): 649-684
  • Han, S., Yalvac, B., Capraro, M. M., & Capraro, M.R. (2015). In-service teachers' implementation of and understanding from project-based learning (PBL) in science, technology, engineering, and mathematics (STEM) project-based learning, Eurasia Journal of Mathematics, Science ve Technology Education, 11(1), 63-76.
  • Hmelo, C. E., Holton,D., & Kolodner, J. L. (2000). Designing to learn about complex systems. The Journal of the Learning Sciences, 9(3), 247–298.
  • Honey, M., Pearson, G., & Schweingruber, H. (Eds). (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. National Academy of Engineering and National Research Council. Washington D.C.: The National Academies Press.
  • Hung, W. (2009). The 9-step problem design process for problem-based learning: Application of the 3C3R model. Educational Research Review, 4(2), 118-141.
  • Hung, W., Jonasse,n, D. H., & Liu, R. (2008). Problem-based learning. In J. M. Spector, J. G. van Merrienboer, M. D., Merrill, & M. Driscoll (Eds.), Handbook of research on educational communications and technology (pp. 485-506) 3rd Ed.. New York: Lawrence Erlbaum Associates.
  • Johnson, C. C. (2012). Letter from the editor: Four key premises of STEM. School Science and Mathematics, 112(1), 1-2.
  • Kınık Topalsan, A. (2018). Sınıf öğretmenliği öğretmen adaylarının geliştirdikleri mühendislik tasarım temelli fen öğretim etkinliklerinin değerlendirilmesi. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi (YYU Journal of Education Faculty),15(1), 186-219.
  • Kolodner, J. L. (2002). Facilitating the learning of design practices: lessons learned from an inquiry into science education. Journal of Industrial Teacher Education, 39(3), 1-28.
  • Leonard, M. J. (2004). Toward epistemologically authentic engineering design activities in the science classroom. National Association for Research in Science Teaching, Vancouver, B.C.
  • Lewis, T. (2006). Design and inquiry: bases for an accommodation between science and technology education in the curriculum?. Journal of Research in Science Teaching, 43(3), 255-281.
  • Marulcu, İ. (2010). Investigating the impact of a lego-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders’ content learning of simple machines (Doctoral dissertation). Lynch School of Education, Boston College
  • Mehalik, M., Doppelt, Y., & Schunn, C. D. (2008). Middle school science through design based learning versus scripted inquiry: better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 71-85.
  • Meng, C. C., Idris, N., & Eu, L. K. (2014). Secondary students' perceptions of assessments in science, technology, engineering, and mathematics (STEM). Eurasia Journal of Mathematics, Science and Technology Education, 10(3), 219-227.
  • Milli Eğitim Bakanlığı [MEB], (2018). Fen Bilimleri Dersi Öğretim Programı. http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=325
  • Moore, T. J., & Smith, K. A. (2014). Advancing the state of the art of STEM integration. Journal of STEM Education, 15(1), 5–10.
  • Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In Engineering in Pre-College Settings: Synthesizing Research, Policy, and Practices (pp. 35-60). Purdue University Press.
  • Morrison, J. (2006). TIES STEM education monograph series, attributes of STEM education. Teaching Institute for Essential Science. Retrieved from https://www.partnersforpubliced.org
  • Nadelson, L.S., Callahan, J., Pyke, P., Hay, A., & Schrader, C. (2009, June). A systemic solution: Elementary-teacher preparation in STEM expertise and engineering awareness. Proceedings of the American Society for Engineering Education Annual Conference & Exhibition, Austin, TX.
  • Nathan, M. J., Srisurichan, R., Walkington, C., Wolfgram, M., Williams, C., & Alibali, M. W. (2013). Building cohesion across representations: a mechanism for stem integration. Journal of Engineering Education, 102(1), 77-116.
  • National Academy of Engineering [NAE] & National Research Council [NRC]. (2009). Engineering in K-12 education understanding the status and improving the prospects. Edt. Katehi, L., Pearson, G. & Feder, M. Washington, DC: National Academies Press.
  • National Research Council [NRC]. (2012). A Framework for k-12 science education: practices, crosscutting concepts, and core ideas. Washington DC: The National Academic Press.
  • Park, D., Park, M., & Bates, A. (2018). Exploring young children’s understanding about the concept of volume through engineering design in a STEM activity: A case study. International Journal of Science and Mathematics Education, 16(2), 275-294.
  • Peterman, K., Daugherty, J. L., Custer, R. L., & Ross, J. M. (2017). Analysing the integration of engineering in science lessons with the engineering-infused lesson rubric. International Journal of Science Education, 39(14), 1913–1931.
  • Ramsay, J. & Sorrell, E. (2006). Problem-based learning: a novel approach to teaching safety, health and environmental courses. Journal of SH&E Research, 3(2), 2-8.
  • Sadler, P. M., Coyle, H. P. & Schwartz, M. (2000). Engineering competitions in the middle school classroom: Key elements in developing effective design challenges. The Journal of the Learning Sciences, 9, 299–327.
  • Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4): 20-26.
  • Shaughnessy, M. (2013). By way of introduction: Mathematics in a STEM context. Mathematics Teaching in the Middle school, 18(6), 324.
  • Sungur Gül, K. & Marulcu, İ. (2014). Yöntem olarak mühendislik-dizayna ve ders materyali olarak legolara öğretmen ile öğretmen adaylarının bakış açılarının incelenmesi. International Periodical for The Languages, Literature and History of Turkish or Turkic, 9(2), 761-786.
  • Üçüncüoğlu, İ. (2018). Fen bi̇lgi̇si̇ öğretmen adaylarina yöneli̇k stem odaklı laboratuvar uygulamalarının tasarlanması ve etki̇li̇li̇ği̇ni̇n araştırılması (Yayımlanmamış Yüksek Lisans Tezi). Sinop Üniversitesi, Eğitim Bilimleri Enstitüsü, Sinop.
  • Wang, H. H., Moore, T. J., Roehrig, G. H. & Park, M. S. (2011). STEM integration: teacher perceptions and practice. Journal of Pre-College Engineering Education Research, 1(2), 1–13.
  • Wendell, K. B. (2008). The theoretical and empirical basis for design-based science instruction for children. Qualifying Paper, Tufts University.
  • Wendell, K. B., & Kolodner, J. L. (2014). Learning disciplinary ideas and practices through engineering design. In A. Johri & B. M. Olds (Eds.), Cambridge handbook of engineering education research (pp. 243–263). New York, NY: Cambridge University Press.
  • Wendell, K. B., Connolly, K. G., Wright, C. G., Jarvin, L., Rogers, C., Barnett, M., & Marulcu, I. (2010). Incorporating engineering design into elementary school science curricula. American Society for Engineering Education Annual Conference & Exposition, Louisville, KY.
  • Williams, J. (2011). STEM education: Proceed with caution. Design and Technology Education, 16(1), 26-35.
  • Yin R. K. (2009). Case study research: Design and methods (4th ed.). California: SAGE Pub. Thousand Oaks.
There are 55 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Esra Bozkurt Altan 0000-0002-5592-1726

Yasemin Hacıoğlu 0000-0002-1184-4204

Publication Date December 31, 2018
Submission Date August 29, 2018
Published in Issue Year 2018 Volume: 12 Issue: 2

Cite

APA Bozkurt Altan, E., & Hacıoğlu, Y. (2018). Fen Bilimleri Öğretmenlerinin Derslerinde STEM Odaklı Etkinlikler Gerçekleştirmek Üzere Geliştirdikleri Problem Durumlarının İncelenmesi. Necatibey Eğitim Fakültesi Elektronik Fen Ve Matematik Eğitimi Dergisi, 12(2), 487-507. https://doi.org/10.17522/balikesirnef.506462

Cited By