Research Article
BibTex RIS Cite

Effects of Beverages on Microhardness of a New Restorative Material Coated with a Surface Sealant

Year 2024, Volume: 13 Issue: 1, 11 - 17, 20.03.2024
https://doi.org/10.53424/balikesirsbd.1255879

Abstract

Objective: Many factors in the mouth affect the clinical lifetime of materials. Acids, enzymes, acidic properties of food and beverages formed in the plaque could change the physicochemical properties of restorative materials. The aim of the study is to examine the effect of acidic beverages on the microhardness of alkasites, and conventional glass ionomers, with changes in surface coating applications. Materials and Methods: Forty specimens in eight mm diameter and two mm thick discs were made with each Cention N and Ionofil U. Half of the specimens were covered with surface sealant. In each of the four subgroups: cola, orange juice, sparkling mineral water and distilled water, 10 discs were stored for 5 minutes, three times a day for a week. Microhardness measurements were made after they were kept in an acidic environment. Results: Acidic beverages significantly reduce the microhardness of restorative materials. The highest microhardness value was observed in the Cention N group with surface sealant. The lowest microhardness value was observed in the Ionofil restorative material group without sealant. Conclusion: The acidic agents tested (cola, orange juice, and sparkling mineral water) have an effect on the reduction of surface microhardness of restorative materials. For clinical decision-making, Cention N is the most suitable material for restorations in patients who are at high risk for erosive conditions.

References

  • Arafa, A., Filfilan, S. S., & Fansa, H. A. (2022). Erosive effect of beverages on surface hardness and ultra-structure of deciduous teeth enamel. Pediatric Dental Journal, 32(3), 186-192. https://doi.org/10.1016/j.pdj.2022.08.001
  • Asmussen, E. (1984). Softening of BISGMA‐based polymers by ethanol and by organic acids of plaque. European Journal of Oral Sciences, 92(3), 257-261. https://doi.org/ 10.1111/j.1600-0722.1984.tb00889.x
  • Baig, M. S., & Fleming, G. J. (2015). Conventional glass-ionomer materials: A review of the developments in glass powder, polyacid liquid and the strategies of reinforcement. Journal of Dentistry, 43(8), 897-912. https://doi.org/10.1016/j.jdent.2015.04.004
  • Baseren, M. (2004). Surface roughness of nanofill and nanohybrid composite resin and ormocer-based tooth-colored restorative materials after several finishing and polishing procedures. Journal of Biomaterials Applications, 19(2), 121-134. https://doi.org/10.1177/088 5328204044011
  • Culina, M. Z., Rajic, V. B., Salinovic, I., Klaric, E., Markovic, L., & Ivaniševic, A. (2022). Influence of pH cycling on erosive wear and color stability of high-viscosity glass ionomer cements. Materials, 15(3), 923.
  • Donly, K. J., & Liu, J. A. (2018). Dentin and enamel demineralization inhibition at restoration margins of Vitremer, Z 100 and Cention N. American Journal of Dentistry, 31(3), 166-168.
  • Faraji, F., Heshmat, H., & Banava, S. (2017). Effect of protective coating on microhardness of a new glass ionomer cement: Nanofilled coating versus unfilled resin. Journal of Conservative Dentistry, 20(4), 260. https:// doi.org/10.4103/JCD.JCD_83_16
  • Fatima, N., Abidi, S. Y. A., & Jat, S. A. (2013). Effectiveness of commonly available surface protecting agents in maintaining microhardness of two cements. Journal of the College of Physicians and Surgeons Pakistan, 23(5), 315-319.
  • Ferracane, J. L. (2006). Hygroscopic and hydrolytic effects in dental polymer networks. Dental Materials, 22(3), 211-222. https://doi.org/10.1016/j.dental.2005.05.005
  • Fousiya, K., Balagopal, V. R., Suresh, K. J., Kumaran, P., Xavier, A. M., & Menon, M. M. (2022). Comparative Evaluation of Compressive Strength and Flexural Strength of Self-cured Cention N with Dual-cured Cention N: An In Vitro Study. International Journal of Clinical Pediatric Dentistry, 15(2), 210-214.
  • Francisconi, L. F., Honório, H. M., Rios, D., Magalhães, A. C., Machado, M. D. A., & Buzalaf, M. A. R. (2008). Effect of erosive pH cycling on different restorative materials and on enamel restored with these materials. Operative Dentistry, 33(2), 203-208. https://doi.org/10.2341/07-77
  • Francois, P., Fouquet, V., Attal, J. P., & Dursun, E. (2020). Commercially available fluoride-releasing restorative materials: a review and a proposal for classification. Materials, 13(10), 2313. https://doi.org/10.3390/ma131 02313
  • Gubler, A., Attin, T., Tarle, Z., Tarle, A., Prskalo, K., & Tauböck, T. T. (2022). Effect of adhesive coating on calcium, phosphate, and fluoride release from experimental and commercial remineralizing dental restorative materials. Scientific Reports, 12(1), 1-17. | https://doi.org/10.1038/s41598-022-14544-9
  • Hamid, D. M. A., Mahmoud, G. M., El-Sharkawy, F. M., & Abou Auf, E. A. (2018). Effect of surface protection, staining beverages and aging on the color stability and hardness of recently introduced uncoated glass ionomer restorative material. Future Dental Journal, 4(2), 288-296. https://doi.org/10.1016/j.fdj.2018.05.004
  • Hamouda, I. M. (2011). Effects of various beverages on hardness, roughness, and solubility of esthetic restorative materials. Journal of Esthetic and Restorative Dentistry, 23(5), 315-322. https://doi.org/10.1111/j.1708-8240.2011.00453.x
  • Hengtrakool, C., Kukiattrakoon, B., & Kedjarune-Leggat, U. (2011). Effect of naturally acidic agents on microhardness and surface micromorphology of restorative materials. European Journal of Dentistry, 5(01), 089-100. https:// doi.org/10.1055/s-0039-1698863
  • Ilday, N., Bayindir, Y. Z., & Erdem, V. (2010). Effect of three different acidic beverages on surface characteristics of composite resin restorative materials. Materials Research Innovations, 14(5), 385-391. https://doi.org/10.1179/ 143307510X12820854748917
  • Khalid, H., Aleesa, N., Grosjean, M., Hill, R., & Wong, F. (2021). Characterisation of a bioactive SiO2-CaO-CaF2-Na2O glass used in composites. Dental Materials, 37(1), 1-9. https://doi.org/10.1016/j.dental.2020.09.017
  • Kim, H. J. (2022). Comparative Evaluation of Bond Strength and Microleakage of Three Ion-Releasing Restorative Materials at Various pH Levels. Applied Sciences, 12(13), 6796. https://doi.org/10.3390/app12136796
  • Mandikos, M. N., McGivney, G. P., Davis, E., Bush, P. J., & Carter, J. M. (2001). A comparison of the wear resistance and hardness of indirect composite resins. Journal of Prosthetic Dentistry, 85(4), 386-395. https://doi.org/ 10.1067/mpr.2001.114267
  • Mazzaoui, S. A., Burrow, M. F., & Tyas, M. J. (2000). Fluoride release from glass ionomer cements and resin composites coated with a dentin adhesive. Dental Materials, 16(3), 166-171. https://doi.org/10.1016/S0109-5641(00)00003-8
  • Mohan, M., Shey, Z., Vaidyanathan, J., Vaidyanathan, T. K., Munisamy, S., & Janal, M. (2008). Color changes of restorative materials exposed in vitro to cola beverage. Pediatric Dentistry, 30(4), 309-316.
  • Parry, J., Shaw, L., Arnaud, M. J., & Smith, A. J. (2001). Investigation of mineral waters and soft drinks in relation to dental erosion. Journal of Oral Rehabilitation, 28(8), 766-772. https://doi.org/10.1046/j.1365-2842.2001.0079 5.x
  • Poggio, C., Lombardini, M., Gaviati, S., & Chiesa, M. (2012). Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes. Journal of Conservative Dentistry, 15(3), 237. https://doi.org/10.4103/0972-0707.97946
  • Prakki, A., Cilli, R., Mondelli, R. F. L., Kalachandra, S., & Pereira, J. C. (2005). Influence of pH environment on polymer based dental material properties. Journal of Dentistry, 33(2), 91-98. https://doi.org/10.1016/j.jdent. 2004.08.004
  • Sarkar, N. K. (2000). Internal corrosion in dental composite wear: its significance and simulation. Journal of Biomedical Materials Research, 53(4), 371-380. https://doi.org/10.1002/1097-4636(2000)53:4%3C371:: AID-JBM11%3E3.0.CO;2-N
  • Scaramucci, T., Hara, A. T., Zero, D. T., Ferreira, S. S., Aoki, I. V., & Sobral, M. A. P. (2011). Development of an orange juice surrogate for the study of dental erosion. Brazilian Dental Journal, 22, 473-478. https://doi. org/10.1590/S0103-64402011000600006
  • Schulze, K. A., Marshall, S. J., Gansky, S. A., & Marshall, G. W. (2003). Color stability and hardness in dental composites after accelerated aging. Dental Materials, 19(7), 612-619. https://doi.org/10.1016/S0109-5641(03) 00003-4
  • Scribante, A., Gallo, S., Scarantino, S., Dagna, A., Poggio, C., & Colombo, M. (2020). Exposure of biomimetic composite materials to acidic challenges: Influence on flexural resistance and elastic modulus. Biomimetics, 5, 56.
  • Shiozawa, M., Takahashi, H., & Iwasaki, N. (2014). Fluoride release and mechanical properties after 1-year water storage of recent restorative glass ionomer cements. Clinical Oral Investigations, 18, 1053-1060. https://doi. org/10.1007/s00784-013-1074-4
  • Szczesio-Wlodarczyk, A., Sokolowski, J., Kleczewska, J., & Bociong, K. (2020). Ageing of dental composites based on methacrylate resins-A critical review of the causes and method of assessment. Polymers, 12(4), 882. https:// doi.org/10.3390/polym12040882
  • Tan, B. L., Yap, A. U. J., Ma, H. N. T., Chew, J., & Tan, W. J. (2015). Effect of beverages on color and translucency of new tooth-colored restoratives. Operative Dentistry, 40(2), E56-E65. https://doi.org/10.2341/149027-L
  • Tanweer, N., Qazi, F. U. R., Das, G., Bilgrami, A., Basha, S., Ahmed, N., et al. (2022). Effect of erosive agents on surface characteristics of nano-fluorapatite ceramic: An In-vitro study. Molecules, 27(15), 4691.
  • Tedesco, T. K., Calvo, A. F., Yoshioka, L., Fukushima, K. A., Cesar, P. F., & Raggio, D. P. (2018). Does Acid Challenge Affect the Properties and Bond Stability of Restorative Materials on Primary Teeth?. J Adhes Dent, 20(3), 223-31. https://doi.org/10.3290/j.jad. a40513
  • West, N. X., Maxwell, A., Hughes, J. A., Parker, D. M., Newcombe, R. G., & Addy, M. (1998). A method to measure clinical erosion: the effect of orange juice consumption on erosion of enamel. Journal of Dentistry, 26(4), 329-335. https://doi.org/10.1016/S0300-5712(97) 00025-0
  • Wongkhantee, S., Patanapiradej, V., Maneenut, C., & Tantbirojn, D. (2006). Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. Journal of Dentistry, 34(3), 214-220. https://doi.org/10.1016/j.jdent.2005.06.003
  • Xie, D., Brantley, W. A., Culbertson, B. M., & Wang, G. (2000). Mechanical properties and microstructures of glass-ionomer cements. Dental Materials, 16(2), 129-138. https://doi.org/10.1016/S0109-5641(99)00093-7
  • Yap, A. U., Ong, J. E., & Yahya, N. A. (2021). Effect of resin coating on highly viscous glass ionomer cements: a dynamic analysis. Journal of the Mechanical Behavior of Biomedical Materials, 113, 104120. https://doi.org/ 10.1016/j.jmbbm.2020.104120
  • Zoergiebel, J., & Ilie, N. (2013). Evaluation of a conventional glass ionomer cement with new zinc formulation: effect of coating, aging and storage agents. Clinical Oral Investigations, 17, 619-626. https://doi.org/10.1007/s00 784-012-0733-1

İçeceklerin Yüzey Örtücüsü Uygulanmış Yeni Bir Restoratif Materyalin Mikrosertliği Üzerine Etkileri

Year 2024, Volume: 13 Issue: 1, 11 - 17, 20.03.2024
https://doi.org/10.53424/balikesirsbd.1255879

Abstract

Amaç: Ağızdaki birçok faktör, malzemelerin klinik ömrünü etkilemektedir. Asitler, enzimler, plakta oluşan yiyeceklerin ve içeceklerin asidik özellikleri restoratif malzemelerin fizikokimyasal özelliklerini değiştirebilmektedir. Çalışmanın amacı, asidik içeceklerin alkasitlerin mikrosertliği ve geleneksel cam iyonomerler üzerindeki etkisini, yüzey örtücü uygulamaları ile değişimlerinin incelenmesidir. Gereç ve Yöntem: Sekiz mm çapında ve iki mm kalınlığında disk şeklindeki kırk örnek Cention N ve Ionofil U ile hazırlandı. Örneklerin yarısı yüzey örtücü ile kaplandı. Kola, portakal suyu, maden suyu ve distile su olmak üzere dört alt grupta her birinde 10 disk olacak şekilde bir hafta boyunca günde üç kez 5 dakika saklandı. Mikro sertlik ölçümleri asidik bir ortamda tutulduktan sonra yapıldı. Bulgular: Asidik içecekler restoratif malzemelerin mikrosertliğini önemli ölçüde azaltmıştır. En yüksek mikrosertlik değeri, yüzey örtücüsü kullanılmış Cention N grubunda gözlenmiştir. En düşük mikrosertlik değeri, yüzey örtücüsü kullanılmayan İononofil U grubunda gözlenmiştir. Sonuç: Test edilen asidik ajanlar (Kola, portakal suyu ve köpüklü mineral suyu) restoratif malzemelerin yüzey mikrosertlikleri üzerinde azaltıcı bir etkiye sahiptir. Klinik kullanım açısından Cention N, eroziv koşullarda yüksek risk altında olan hastalarda restorasyonlar için en uygun materyaldir.

References

  • Arafa, A., Filfilan, S. S., & Fansa, H. A. (2022). Erosive effect of beverages on surface hardness and ultra-structure of deciduous teeth enamel. Pediatric Dental Journal, 32(3), 186-192. https://doi.org/10.1016/j.pdj.2022.08.001
  • Asmussen, E. (1984). Softening of BISGMA‐based polymers by ethanol and by organic acids of plaque. European Journal of Oral Sciences, 92(3), 257-261. https://doi.org/ 10.1111/j.1600-0722.1984.tb00889.x
  • Baig, M. S., & Fleming, G. J. (2015). Conventional glass-ionomer materials: A review of the developments in glass powder, polyacid liquid and the strategies of reinforcement. Journal of Dentistry, 43(8), 897-912. https://doi.org/10.1016/j.jdent.2015.04.004
  • Baseren, M. (2004). Surface roughness of nanofill and nanohybrid composite resin and ormocer-based tooth-colored restorative materials after several finishing and polishing procedures. Journal of Biomaterials Applications, 19(2), 121-134. https://doi.org/10.1177/088 5328204044011
  • Culina, M. Z., Rajic, V. B., Salinovic, I., Klaric, E., Markovic, L., & Ivaniševic, A. (2022). Influence of pH cycling on erosive wear and color stability of high-viscosity glass ionomer cements. Materials, 15(3), 923.
  • Donly, K. J., & Liu, J. A. (2018). Dentin and enamel demineralization inhibition at restoration margins of Vitremer, Z 100 and Cention N. American Journal of Dentistry, 31(3), 166-168.
  • Faraji, F., Heshmat, H., & Banava, S. (2017). Effect of protective coating on microhardness of a new glass ionomer cement: Nanofilled coating versus unfilled resin. Journal of Conservative Dentistry, 20(4), 260. https:// doi.org/10.4103/JCD.JCD_83_16
  • Fatima, N., Abidi, S. Y. A., & Jat, S. A. (2013). Effectiveness of commonly available surface protecting agents in maintaining microhardness of two cements. Journal of the College of Physicians and Surgeons Pakistan, 23(5), 315-319.
  • Ferracane, J. L. (2006). Hygroscopic and hydrolytic effects in dental polymer networks. Dental Materials, 22(3), 211-222. https://doi.org/10.1016/j.dental.2005.05.005
  • Fousiya, K., Balagopal, V. R., Suresh, K. J., Kumaran, P., Xavier, A. M., & Menon, M. M. (2022). Comparative Evaluation of Compressive Strength and Flexural Strength of Self-cured Cention N with Dual-cured Cention N: An In Vitro Study. International Journal of Clinical Pediatric Dentistry, 15(2), 210-214.
  • Francisconi, L. F., Honório, H. M., Rios, D., Magalhães, A. C., Machado, M. D. A., & Buzalaf, M. A. R. (2008). Effect of erosive pH cycling on different restorative materials and on enamel restored with these materials. Operative Dentistry, 33(2), 203-208. https://doi.org/10.2341/07-77
  • Francois, P., Fouquet, V., Attal, J. P., & Dursun, E. (2020). Commercially available fluoride-releasing restorative materials: a review and a proposal for classification. Materials, 13(10), 2313. https://doi.org/10.3390/ma131 02313
  • Gubler, A., Attin, T., Tarle, Z., Tarle, A., Prskalo, K., & Tauböck, T. T. (2022). Effect of adhesive coating on calcium, phosphate, and fluoride release from experimental and commercial remineralizing dental restorative materials. Scientific Reports, 12(1), 1-17. | https://doi.org/10.1038/s41598-022-14544-9
  • Hamid, D. M. A., Mahmoud, G. M., El-Sharkawy, F. M., & Abou Auf, E. A. (2018). Effect of surface protection, staining beverages and aging on the color stability and hardness of recently introduced uncoated glass ionomer restorative material. Future Dental Journal, 4(2), 288-296. https://doi.org/10.1016/j.fdj.2018.05.004
  • Hamouda, I. M. (2011). Effects of various beverages on hardness, roughness, and solubility of esthetic restorative materials. Journal of Esthetic and Restorative Dentistry, 23(5), 315-322. https://doi.org/10.1111/j.1708-8240.2011.00453.x
  • Hengtrakool, C., Kukiattrakoon, B., & Kedjarune-Leggat, U. (2011). Effect of naturally acidic agents on microhardness and surface micromorphology of restorative materials. European Journal of Dentistry, 5(01), 089-100. https:// doi.org/10.1055/s-0039-1698863
  • Ilday, N., Bayindir, Y. Z., & Erdem, V. (2010). Effect of three different acidic beverages on surface characteristics of composite resin restorative materials. Materials Research Innovations, 14(5), 385-391. https://doi.org/10.1179/ 143307510X12820854748917
  • Khalid, H., Aleesa, N., Grosjean, M., Hill, R., & Wong, F. (2021). Characterisation of a bioactive SiO2-CaO-CaF2-Na2O glass used in composites. Dental Materials, 37(1), 1-9. https://doi.org/10.1016/j.dental.2020.09.017
  • Kim, H. J. (2022). Comparative Evaluation of Bond Strength and Microleakage of Three Ion-Releasing Restorative Materials at Various pH Levels. Applied Sciences, 12(13), 6796. https://doi.org/10.3390/app12136796
  • Mandikos, M. N., McGivney, G. P., Davis, E., Bush, P. J., & Carter, J. M. (2001). A comparison of the wear resistance and hardness of indirect composite resins. Journal of Prosthetic Dentistry, 85(4), 386-395. https://doi.org/ 10.1067/mpr.2001.114267
  • Mazzaoui, S. A., Burrow, M. F., & Tyas, M. J. (2000). Fluoride release from glass ionomer cements and resin composites coated with a dentin adhesive. Dental Materials, 16(3), 166-171. https://doi.org/10.1016/S0109-5641(00)00003-8
  • Mohan, M., Shey, Z., Vaidyanathan, J., Vaidyanathan, T. K., Munisamy, S., & Janal, M. (2008). Color changes of restorative materials exposed in vitro to cola beverage. Pediatric Dentistry, 30(4), 309-316.
  • Parry, J., Shaw, L., Arnaud, M. J., & Smith, A. J. (2001). Investigation of mineral waters and soft drinks in relation to dental erosion. Journal of Oral Rehabilitation, 28(8), 766-772. https://doi.org/10.1046/j.1365-2842.2001.0079 5.x
  • Poggio, C., Lombardini, M., Gaviati, S., & Chiesa, M. (2012). Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes. Journal of Conservative Dentistry, 15(3), 237. https://doi.org/10.4103/0972-0707.97946
  • Prakki, A., Cilli, R., Mondelli, R. F. L., Kalachandra, S., & Pereira, J. C. (2005). Influence of pH environment on polymer based dental material properties. Journal of Dentistry, 33(2), 91-98. https://doi.org/10.1016/j.jdent. 2004.08.004
  • Sarkar, N. K. (2000). Internal corrosion in dental composite wear: its significance and simulation. Journal of Biomedical Materials Research, 53(4), 371-380. https://doi.org/10.1002/1097-4636(2000)53:4%3C371:: AID-JBM11%3E3.0.CO;2-N
  • Scaramucci, T., Hara, A. T., Zero, D. T., Ferreira, S. S., Aoki, I. V., & Sobral, M. A. P. (2011). Development of an orange juice surrogate for the study of dental erosion. Brazilian Dental Journal, 22, 473-478. https://doi. org/10.1590/S0103-64402011000600006
  • Schulze, K. A., Marshall, S. J., Gansky, S. A., & Marshall, G. W. (2003). Color stability and hardness in dental composites after accelerated aging. Dental Materials, 19(7), 612-619. https://doi.org/10.1016/S0109-5641(03) 00003-4
  • Scribante, A., Gallo, S., Scarantino, S., Dagna, A., Poggio, C., & Colombo, M. (2020). Exposure of biomimetic composite materials to acidic challenges: Influence on flexural resistance and elastic modulus. Biomimetics, 5, 56.
  • Shiozawa, M., Takahashi, H., & Iwasaki, N. (2014). Fluoride release and mechanical properties after 1-year water storage of recent restorative glass ionomer cements. Clinical Oral Investigations, 18, 1053-1060. https://doi. org/10.1007/s00784-013-1074-4
  • Szczesio-Wlodarczyk, A., Sokolowski, J., Kleczewska, J., & Bociong, K. (2020). Ageing of dental composites based on methacrylate resins-A critical review of the causes and method of assessment. Polymers, 12(4), 882. https:// doi.org/10.3390/polym12040882
  • Tan, B. L., Yap, A. U. J., Ma, H. N. T., Chew, J., & Tan, W. J. (2015). Effect of beverages on color and translucency of new tooth-colored restoratives. Operative Dentistry, 40(2), E56-E65. https://doi.org/10.2341/149027-L
  • Tanweer, N., Qazi, F. U. R., Das, G., Bilgrami, A., Basha, S., Ahmed, N., et al. (2022). Effect of erosive agents on surface characteristics of nano-fluorapatite ceramic: An In-vitro study. Molecules, 27(15), 4691.
  • Tedesco, T. K., Calvo, A. F., Yoshioka, L., Fukushima, K. A., Cesar, P. F., & Raggio, D. P. (2018). Does Acid Challenge Affect the Properties and Bond Stability of Restorative Materials on Primary Teeth?. J Adhes Dent, 20(3), 223-31. https://doi.org/10.3290/j.jad. a40513
  • West, N. X., Maxwell, A., Hughes, J. A., Parker, D. M., Newcombe, R. G., & Addy, M. (1998). A method to measure clinical erosion: the effect of orange juice consumption on erosion of enamel. Journal of Dentistry, 26(4), 329-335. https://doi.org/10.1016/S0300-5712(97) 00025-0
  • Wongkhantee, S., Patanapiradej, V., Maneenut, C., & Tantbirojn, D. (2006). Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. Journal of Dentistry, 34(3), 214-220. https://doi.org/10.1016/j.jdent.2005.06.003
  • Xie, D., Brantley, W. A., Culbertson, B. M., & Wang, G. (2000). Mechanical properties and microstructures of glass-ionomer cements. Dental Materials, 16(2), 129-138. https://doi.org/10.1016/S0109-5641(99)00093-7
  • Yap, A. U., Ong, J. E., & Yahya, N. A. (2021). Effect of resin coating on highly viscous glass ionomer cements: a dynamic analysis. Journal of the Mechanical Behavior of Biomedical Materials, 113, 104120. https://doi.org/ 10.1016/j.jmbbm.2020.104120
  • Zoergiebel, J., & Ilie, N. (2013). Evaluation of a conventional glass ionomer cement with new zinc formulation: effect of coating, aging and storage agents. Clinical Oral Investigations, 17, 619-626. https://doi.org/10.1007/s00 784-012-0733-1
There are 39 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Burak Gümüştaş This is me 0000-0002-7538-1763

Sinem Birant 0000-0002-3990-7270

Publication Date March 20, 2024
Submission Date February 24, 2023
Published in Issue Year 2024 Volume: 13 Issue: 1

Cite

APA Gümüştaş, B., & Birant, S. (2024). Effects of Beverages on Microhardness of a New Restorative Material Coated with a Surface Sealant. Balıkesir Sağlık Bilimleri Dergisi, 13(1), 11-17. https://doi.org/10.53424/balikesirsbd.1255879

International Peer Reviewed Journal

The journal adopts Open Access Policy and does not request article proccessing charge (APC), article publishing charge or any other charges.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.