Research Article
BibTex RIS Cite

Dikimle Yetiştirilmiş Kayın Meşçerelerinde, Aralamanın Mikrobiyal Biyokütle Karbon ve Toprak Solunumuna Etkileri

Year 2023, , 265 - 278, 15.08.2023
https://doi.org/10.24011/barofd.1232571

Abstract

Toprak solunumu atmosfere verilen karbondioksitin (CO2) önemli bir kaynağı olup küresel ısınma bakımından önemli bir ekosistem sürecidir. Yapılan ormancılık uygulamaları bu süreci önemli derecede etkileyebilmektedir. Bu çalışmada; Trabzon’da Doğu kayını (Fagus orientalis L.) ağaçlandırma alanında farklı aralama derecelerinin ve mevsimlerin, mikrobiyal biyokütle karbon, bazal solunum ve toprak solunumuna etkileri araştırılmıştır. Bu amaçla iki farklı aralama şiddetinde (%25 ve %40) ve kontrolde, üç tekerrür ile toplam dokuz deneme alanı oluşturulmuştur. Ölçümlere bir yıl boyunca devam edilmiştir. Sonuçlar tek yönlü varyans analizi (ANOVA) ile değerlendirilmiştir. Çalışma sonucunda ortalama toprak mikrobiyal biyokütle C içerikleri; %25 aralama yapılan parselde 469,57 𝜇g/g, kontrol parselinde 478,73 𝜇g/g ve %40 aralama yapılan parselde 541,06 𝜇g/g olarak bulunmuştur. ANOVA sonuçları %40 aralama parsellerindeki mikrobiyal biyokütle C içeriklerinin kontrol ve %25 aralama yapılan parsellerden anlamlı oranda yüksek olduğunu göstermektedir. Mikrobiyal biyokütle C içerikleri yaz mevsiminde diğer mevsimlerden anlamlı oranda yüksektir. Kontrol ile aralama yapılan topraklar arasında bazal solunum ve toprak solunumu değerleri bakımından anlamlı bir fark belirlenememiştir. Buna karşılık bazal solunum ve toprak solunumu mevsimlere göre anlamlı oranda değişim göstermiştir. Çalışma alanında su açığı olmadığı için değişimlerin nem yetersizliğinden çok, sıcaklık tarafından belirlendiği düşünülmektedir. Yapılan %25 aralama şiddeti karbon yönetimi açısından bakıldığında topraktaki karbon salımında anlamlı fark yaratacak düzeyde değildir. %40 oranında yapılan aralamada da CO2 salınımı yönünden yapılan müdahalenin mikrobiyal biyokütleyi olumlu yönde teşvik ettiği, topraktaki CO2 salımını ise anlamlı düzeyde değiştirmediği tespit edilmiştir. Dolayısıyla bu yörede kayın plantasyonlarında yapılan bu aralama çalışmalarının önemli ölçüde karbon salımına neden olmadığı, mikrobiyal biyoması teşvik ettiği için toprak sağlığı açısından yararlı olabileceği sonucuna varılmıştır.

Supporting Institution

Orman Genel Müdürlüğü

Project Number

03.6405/2013-2016

Thanks

Bu makale, Orman Genel Müdürlüğü Doğu Karadeniz Ormancılık Araştırma Enstitüsü Müdürlüğü tarafından yürütülen “Trabzon Vakfıkebir Yöresinde Dikimle Yetiştirilmiş Kayın (Fagus orientalis L.) Meşçerelerinde Aralamaların Mikrobiyal Karbon, Toprak Solunumu ve Ölü Örtü Ayrışmasına Etkileri (2013-2018)/03.6405” adlı araştırma projesinden üretilmiştir.

References

  • Alef, K. ve Nannipieri, P. (1995). Soil respiration. In: Methods in Applied Soil Microbiology and Biochemistry. eds. K. Alef and P, Academic Press, London, pp. 214–218.
  • Akburak, S. ve Makineci, E. (2013). Temporal changes of soil respiration under different tree species. Environmental Monitoring and Assessment, 185, 3349–3358, DOI:10.1007/s10661-012-2795-6
  • Akburak S. ve Makineci E. (2016). Thinning effects on soil and microbial respiration in a coppice-originated Carpinus betulus L. stand in Turkey. iForest, 9, 783-790. DOI:10.3832/ifor1810-009
  • Anderson, J. M. ve Ingram, J. S. I. (1996). Tropical Soil Biology and Fertility A Handbook of Methods. Second Edition, Cab International Wallingford, UK, 221 pp.
  • Barg, A. K. ve Edmonds, R. L. (1999). Influence of partial cutting on site microclimate, soil nitrogen dynamics, and microbial biomass in Douglas-fir stands in western Washington. Canadian Journal of Forest Research, 29, 705–713. DOI:10.1139/x99-045
  • Bolat, I. (2014). The effect of thinning on microbial biomass C, N and basal respiration in black pine forest soils in Mudurnu, Turkey. European Journal of Forest Research, 133, 131–139. DOI:10.1007/s10342-013-0752-8
  • Bond-Lamberty, B. ve Thomson, A. (2010). Global database of soil respiration data. Biogeosciences 7(6), 1915–2010. DOI: 10.5194/bg-7-1915-2010
  • Cregger, M. A., Schadt, C. W., McDowell, N. G., Pockman, W. T. ve Classena, A. T. (2012). Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Applied and Environmental Microbiology, 78, 24, 8587–8594. DOI:10.1128/AEM.02050-12
  • Diaz-Ravina, M., Acea, M. J. ve Carballas, T. (1995). Seasonal changes in microbial biomassand nutrient flush in forest soils. Biology and Fertility of Soils, 19, 220-226.
  • Drewitt, G. B., Black, T. A., Nesic, Z., Humphreys, E. R., Jork E. M., Swanson R., Ethier G. J., Griffis T. ve Morgenstern K. (2002). Measuring forest floor CO2 fluxes in a Douglas-fir forest. Agricultural and Forest Meteorology, 110, 299-317. DOI:10.1016/S0168-1923(01)00294-5
  • Entry, J. A., Stark, N. M. ve Loewenstein, H. (1986). Effect of timber harvesting on microbial biomass fluxes in a northern Rocky Mountain forest soil. Canadian Journal of Forest Research, 16, 1076–1081. DOI:10.1139/x86-186
  • Franzluebbers, K., Franzluebbers, A. J. ve Jawson, M. D. (2002). Environmental controls on soil and whole-ecosystem respiration from a tallgrass prairie. Soil Science Society of America Journal, 66,254-262. DOI:10.2136/sssaj2002.0254
  • Giai, C. ve Boerner, R. (2007). Effects of ecological restoration on microbial activity, microbial functional diversity, and soil organic matter in mixed-oak forests of southern Ohio, USA. Applied Soil Ecology, 35, 281–290. DOI:10.1016/j.apsoil.2006.08.003
  • Grogan, P. (1998). CO2 flux measurement using soda lime: correction for water formed during co2 adsorption. Ecological Society of America. 79, 4, 1467-1468. DOI:10.1890/0012-9658(1998)079[1467:CFMUSL]2.0.CO;2
  • Hughes, S. ve Reynolds, B. (1991). Effects of clear felling on microbial biomass phosphorus in the Oh horizon of an afforested podzol in Mid-Wales. Soil Use and Management, 7, 183-188. DOI:10.1111/j.1475-2743.1991.tb00872.x
  • Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D. W., Minkkinen, K. ve Byrne, K. A. (2007). How strongly can forest management influence soil carbon sequestration? Geoderma, 137, 253–268. DOI:10.1016/j.geoderma.2006.09.003
  • Jenkinson, D. S. ve Ladd, J. N. (1981). Microbial biomass in soil: measurement and turnover. Pages 415–472 in E. A. Paul and J. N. Ladd, editors. Soil biochemistry. Academic Press, Dekker, New York, New York, USA
  • Kominoski, J. S., Hoellein, T. J., Kelly, J. J. ve Pringle, C. M. (2009). Does mixing litter of different qualities alter stream microbial diversity and functioning on individual litter species? Oikos, 118, 457–463. DOI: 10.1111/j.1600-0706.2008.17222.x
  • Ladd, J. N., Amato, N. ve Butler, J. H. (1985). Decomposition of plant material in Australian soils. I. The effect of quantity added on decomposition and on residual microbial biomass. Australian Journal of Soil Research, 21(4), 563–570. DOI: 10.1071/SR9830563
  • Monteith, J. L. (1964). Journal of the Royal Meteorological Society, 90 (383), 107.
  • Özbayram, A. K. (2018). Doğu kayını meşcerelerinde aralamanın yaprak alan indeksine etkisi. Bartın Orman Fakültesi Dergisi, 20 (3), 590-598. DOI: 10.24011/barofd.437570
  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S. ve Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333 (6045), 988–993. DOI: 10.1126/science.1201609
  • Raich, J. W. ve Potter, C. S. (1995). Global Patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23–36. DOI:10.1029/94GB02723
  • Reichstein, M. ve Beer, C. (2008). Soil respiration across scales: The importance of a model-data integration framework for data interpretation. Journal of Plant Nutrition and Soil Science, 171(3), 344–354. DOI:10.1002/jpln.200700075
  • Rowell, D. L. (1994). Soil Science Methods and Applications. Longman Scientific and Technical, Singapore, 350 pp.
  • Santruckova, H. (1992). Microbial biomass, activity and soil respiration in relation to secondary succession. Pedobiologia, 36, 341-350
  • Schilling, E., Lockaby, B. ve Rummer, R. (1999). Belowground nutrient dynamics following three harvest intensities on the Pearl River floodplain, Mississippi. Soil Science Society of America Journal, 63, 1856–1868. DOI:10.2136/sssaj1999.6361856x
  • Selig, M. F., Seiler, J. R. ve Tyree, M. C. (2008). Soil carbon and CO2 efflux as influenced by the thinning of loblolly pine (Pinus taeda L.) plantations on the piedmont of Virginia. Forest Science, 54,58–66. DOI:10.1093/forestscience/54.1.58
  • Shi, S., Richardson, A. E., O'Callaghan, M., Jones, E. E., DeAngelis, K. M., Stewart, A., Firestone, M. K. ve Condron, L. M. (2011). Effects of selected root exudate components on soil bacterial communities. FEMS Microbiology Ecology, 77, 3, 600–610. DOI: 10.1111/j.1574-6941.2011.01150.x
  • Smith, J. L. ve Paul, E. A. (1990). The significance of soil microbial biomass estimations. In Soil biochemistry. Vol. 6. Edited by J.M. Bollag and G. Stotzky. Marcel Dekker, New York. pp. 357–396.
  • Thibodeau, L., Raymond, P., Camire, C. ve Munson, A. D. (2000). Impact of precommercial thinning in balsam fir stands on soil nitrogen dynamics, microbial biomass, decomposition, and foliar nutrition. Canadian Journal of Forest Research, 30 (2), 229–238. DOI: 10.1139/x99-202
  • Tolunay, D. ve Çömez, A. (2007). Orman topraklarında karbon depolanması ve Türkiye’deki durum, Küresel İklim Değişimi ve Su Sorunlarının Çözümünde Ormanlar Sempozyumu, 13- 14 Aralık 2007, İstanbul, 2007.
  • Tüfekçioğlu, A. ve Küçük, M. (2004). Soil respiration in young and old oriental spruce stands and in adjacent grasslands in Artvin, Turkey. Turkish Journal of Agriculture and Forestry, 28(6), 429-434.
  • Wic Baena, C., Andres-Abellan, M., Lucas-Borja, M., Martínez-García, E., GarcíaMorote, F., Rubio, E. ve López-Serrano, F. (2013). Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain). Forest Ecology and Management, 308,223–230. DOI:10.1016/j.foreco.2013.06.065
  • Vance, E. D., Brookes, P. C. ve Jenkinson, D. S. (1987). Microbial biomass measurements in forest soils: The use of the chlororform fumigation-incubation method for strongly acid soils. Soil Biology and Biochemistry, 19(6), 697–702. DOI:10.1016/0038-0717(87)90051-4
  • Yılmaz, S. (2016). Doğu Kayını (Fagus orientalis Lipsky) Plantasyon Alanlarında Farklı Şiddetteki İlk Aralamaların Ağaçların Gelişimi, Toprak ve Ölü Örtü Özelliklerine Etkisinin Belirlenmesi, Orman Genel Müdürlüğü, Doğu Karadeniz Ormancılık Araştırma Enstitüsü Araştırma Projesi, Proje No: 03.1208/2009-2015, 72s.

Effects of Thinning on Microbial Biomass Carbon and Soil Respiration in Beech Plantations

Year 2023, , 265 - 278, 15.08.2023
https://doi.org/10.24011/barofd.1232571

Abstract

Soil respiration is an important source of carbon dioxide (CO2) released into the atmosphere and is an important ecosystem process in terms of global warming. Forestry practices can significantly affect this process. In this study; the effects of different thinning intensities and seasons on microbial biomass carbon (C), basal respiration and soil respiration were investigated in the oriental beech (Fagus orientalis L.) plantation area in Trabzon. For this purpose, a total of nine plots were established with three replications at two different thinning intensities (25% and 40%) and control. Measurements made for one year. As a result of the study, the mean soil microbial biomass C contents; It was found to be 469.57 𝜇g/g in the 25% thinning plots, 478.73 𝜇g/g in the control plots and 541.06 𝜇g/g in the 40% thinning plots. ANOVA results show that soil microbial biomass C content in 40% thinning plots was significantly higher than control and 25% thinning plots. Microbial biomass C contents were significantly higher in summer than in the other seasons. There was no significant difference between the control and the soils of thinned plots in terms of microbial respiration and soil respiration values. On the other hand, basal respiration and soil respiration showed significant changes according to the seasons. Since there was no water deficit in the study area, it was thought that the changes were determined by soil temperature rather than soil moisture limitation. In terms of carbon management, 25% thinning intensity was not at a level to make a significant difference in carbon emissions from the soil. When we look at the CO2 release in the 40% thinning, it has been determined that the intervention promoted microbial biomass positively, but did not significantly change the CO2 release in the soil. Therefore, it was concluded that these thinning intensities in beech plantations in this region did not cause significant carbon emissions and were beneficial for soil health as they enhanced microbial biomass.

Project Number

03.6405/2013-2016

References

  • Alef, K. ve Nannipieri, P. (1995). Soil respiration. In: Methods in Applied Soil Microbiology and Biochemistry. eds. K. Alef and P, Academic Press, London, pp. 214–218.
  • Akburak, S. ve Makineci, E. (2013). Temporal changes of soil respiration under different tree species. Environmental Monitoring and Assessment, 185, 3349–3358, DOI:10.1007/s10661-012-2795-6
  • Akburak S. ve Makineci E. (2016). Thinning effects on soil and microbial respiration in a coppice-originated Carpinus betulus L. stand in Turkey. iForest, 9, 783-790. DOI:10.3832/ifor1810-009
  • Anderson, J. M. ve Ingram, J. S. I. (1996). Tropical Soil Biology and Fertility A Handbook of Methods. Second Edition, Cab International Wallingford, UK, 221 pp.
  • Barg, A. K. ve Edmonds, R. L. (1999). Influence of partial cutting on site microclimate, soil nitrogen dynamics, and microbial biomass in Douglas-fir stands in western Washington. Canadian Journal of Forest Research, 29, 705–713. DOI:10.1139/x99-045
  • Bolat, I. (2014). The effect of thinning on microbial biomass C, N and basal respiration in black pine forest soils in Mudurnu, Turkey. European Journal of Forest Research, 133, 131–139. DOI:10.1007/s10342-013-0752-8
  • Bond-Lamberty, B. ve Thomson, A. (2010). Global database of soil respiration data. Biogeosciences 7(6), 1915–2010. DOI: 10.5194/bg-7-1915-2010
  • Cregger, M. A., Schadt, C. W., McDowell, N. G., Pockman, W. T. ve Classena, A. T. (2012). Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Applied and Environmental Microbiology, 78, 24, 8587–8594. DOI:10.1128/AEM.02050-12
  • Diaz-Ravina, M., Acea, M. J. ve Carballas, T. (1995). Seasonal changes in microbial biomassand nutrient flush in forest soils. Biology and Fertility of Soils, 19, 220-226.
  • Drewitt, G. B., Black, T. A., Nesic, Z., Humphreys, E. R., Jork E. M., Swanson R., Ethier G. J., Griffis T. ve Morgenstern K. (2002). Measuring forest floor CO2 fluxes in a Douglas-fir forest. Agricultural and Forest Meteorology, 110, 299-317. DOI:10.1016/S0168-1923(01)00294-5
  • Entry, J. A., Stark, N. M. ve Loewenstein, H. (1986). Effect of timber harvesting on microbial biomass fluxes in a northern Rocky Mountain forest soil. Canadian Journal of Forest Research, 16, 1076–1081. DOI:10.1139/x86-186
  • Franzluebbers, K., Franzluebbers, A. J. ve Jawson, M. D. (2002). Environmental controls on soil and whole-ecosystem respiration from a tallgrass prairie. Soil Science Society of America Journal, 66,254-262. DOI:10.2136/sssaj2002.0254
  • Giai, C. ve Boerner, R. (2007). Effects of ecological restoration on microbial activity, microbial functional diversity, and soil organic matter in mixed-oak forests of southern Ohio, USA. Applied Soil Ecology, 35, 281–290. DOI:10.1016/j.apsoil.2006.08.003
  • Grogan, P. (1998). CO2 flux measurement using soda lime: correction for water formed during co2 adsorption. Ecological Society of America. 79, 4, 1467-1468. DOI:10.1890/0012-9658(1998)079[1467:CFMUSL]2.0.CO;2
  • Hughes, S. ve Reynolds, B. (1991). Effects of clear felling on microbial biomass phosphorus in the Oh horizon of an afforested podzol in Mid-Wales. Soil Use and Management, 7, 183-188. DOI:10.1111/j.1475-2743.1991.tb00872.x
  • Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D. W., Minkkinen, K. ve Byrne, K. A. (2007). How strongly can forest management influence soil carbon sequestration? Geoderma, 137, 253–268. DOI:10.1016/j.geoderma.2006.09.003
  • Jenkinson, D. S. ve Ladd, J. N. (1981). Microbial biomass in soil: measurement and turnover. Pages 415–472 in E. A. Paul and J. N. Ladd, editors. Soil biochemistry. Academic Press, Dekker, New York, New York, USA
  • Kominoski, J. S., Hoellein, T. J., Kelly, J. J. ve Pringle, C. M. (2009). Does mixing litter of different qualities alter stream microbial diversity and functioning on individual litter species? Oikos, 118, 457–463. DOI: 10.1111/j.1600-0706.2008.17222.x
  • Ladd, J. N., Amato, N. ve Butler, J. H. (1985). Decomposition of plant material in Australian soils. I. The effect of quantity added on decomposition and on residual microbial biomass. Australian Journal of Soil Research, 21(4), 563–570. DOI: 10.1071/SR9830563
  • Monteith, J. L. (1964). Journal of the Royal Meteorological Society, 90 (383), 107.
  • Özbayram, A. K. (2018). Doğu kayını meşcerelerinde aralamanın yaprak alan indeksine etkisi. Bartın Orman Fakültesi Dergisi, 20 (3), 590-598. DOI: 10.24011/barofd.437570
  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S. ve Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333 (6045), 988–993. DOI: 10.1126/science.1201609
  • Raich, J. W. ve Potter, C. S. (1995). Global Patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23–36. DOI:10.1029/94GB02723
  • Reichstein, M. ve Beer, C. (2008). Soil respiration across scales: The importance of a model-data integration framework for data interpretation. Journal of Plant Nutrition and Soil Science, 171(3), 344–354. DOI:10.1002/jpln.200700075
  • Rowell, D. L. (1994). Soil Science Methods and Applications. Longman Scientific and Technical, Singapore, 350 pp.
  • Santruckova, H. (1992). Microbial biomass, activity and soil respiration in relation to secondary succession. Pedobiologia, 36, 341-350
  • Schilling, E., Lockaby, B. ve Rummer, R. (1999). Belowground nutrient dynamics following three harvest intensities on the Pearl River floodplain, Mississippi. Soil Science Society of America Journal, 63, 1856–1868. DOI:10.2136/sssaj1999.6361856x
  • Selig, M. F., Seiler, J. R. ve Tyree, M. C. (2008). Soil carbon and CO2 efflux as influenced by the thinning of loblolly pine (Pinus taeda L.) plantations on the piedmont of Virginia. Forest Science, 54,58–66. DOI:10.1093/forestscience/54.1.58
  • Shi, S., Richardson, A. E., O'Callaghan, M., Jones, E. E., DeAngelis, K. M., Stewart, A., Firestone, M. K. ve Condron, L. M. (2011). Effects of selected root exudate components on soil bacterial communities. FEMS Microbiology Ecology, 77, 3, 600–610. DOI: 10.1111/j.1574-6941.2011.01150.x
  • Smith, J. L. ve Paul, E. A. (1990). The significance of soil microbial biomass estimations. In Soil biochemistry. Vol. 6. Edited by J.M. Bollag and G. Stotzky. Marcel Dekker, New York. pp. 357–396.
  • Thibodeau, L., Raymond, P., Camire, C. ve Munson, A. D. (2000). Impact of precommercial thinning in balsam fir stands on soil nitrogen dynamics, microbial biomass, decomposition, and foliar nutrition. Canadian Journal of Forest Research, 30 (2), 229–238. DOI: 10.1139/x99-202
  • Tolunay, D. ve Çömez, A. (2007). Orman topraklarında karbon depolanması ve Türkiye’deki durum, Küresel İklim Değişimi ve Su Sorunlarının Çözümünde Ormanlar Sempozyumu, 13- 14 Aralık 2007, İstanbul, 2007.
  • Tüfekçioğlu, A. ve Küçük, M. (2004). Soil respiration in young and old oriental spruce stands and in adjacent grasslands in Artvin, Turkey. Turkish Journal of Agriculture and Forestry, 28(6), 429-434.
  • Wic Baena, C., Andres-Abellan, M., Lucas-Borja, M., Martínez-García, E., GarcíaMorote, F., Rubio, E. ve López-Serrano, F. (2013). Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain). Forest Ecology and Management, 308,223–230. DOI:10.1016/j.foreco.2013.06.065
  • Vance, E. D., Brookes, P. C. ve Jenkinson, D. S. (1987). Microbial biomass measurements in forest soils: The use of the chlororform fumigation-incubation method for strongly acid soils. Soil Biology and Biochemistry, 19(6), 697–702. DOI:10.1016/0038-0717(87)90051-4
  • Yılmaz, S. (2016). Doğu Kayını (Fagus orientalis Lipsky) Plantasyon Alanlarında Farklı Şiddetteki İlk Aralamaların Ağaçların Gelişimi, Toprak ve Ölü Örtü Özelliklerine Etkisinin Belirlenmesi, Orman Genel Müdürlüğü, Doğu Karadeniz Ormancılık Araştırma Enstitüsü Araştırma Projesi, Proje No: 03.1208/2009-2015, 72s.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Forest Industry Engineering, Forestry Sciences (Other)
Journal Section Research Articles
Authors

Abdurrahman Semercioğlu 0000-0003-0565-8090

Filiz Yüksek 0000-0003-3275-642X

Ömer Kara 0000-0002-7787-7463

Arzu Aygün 0000-0003-2370-1566

Arife Saylam 0000-0003-4963-5800

Selvinaz Yılmaz 0000-0003-4255-0927

Project Number 03.6405/2013-2016
Early Pub Date July 18, 2023
Publication Date August 15, 2023
Published in Issue Year 2023

Cite

APA Semercioğlu, A., Yüksek, F., Kara, Ö., Aygün, A., et al. (2023). Dikimle Yetiştirilmiş Kayın Meşçerelerinde, Aralamanın Mikrobiyal Biyokütle Karbon ve Toprak Solunumuna Etkileri. Bartın Orman Fakültesi Dergisi, 25(2), 265-278. https://doi.org/10.24011/barofd.1232571


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com