Research Article
BibTex RIS Cite

The Evaluation of Tree Bark as Filler for Wood-Plastic Composites: Experimental Study and Modelling

Year 2024, , 21 - 30, 29.02.2024
https://doi.org/10.24011/barofd.1382084

Abstract

Tree bark is one of the waste materials produced during harvesting. In this study, tree bark was evaluated for the production of WPCs. Three tree barks (Oak, Calabrian pine, and Cedar) were added to the matrix as an alternative for wood flour (20-80 mesh). Different tree bark content (10, 20, 40%) were also selected. The tree bark-based WPCs were produced with the flat-pressed method. The effect of tree bark on water absorption (WA) and thickness swelling (TS) were investigated during the 14 days. Tree barks have a significant effect on the WA and TS properties of the composites. As the bark content increased, the WA and TS values decreased. While the WA values increased up to 11.27% for control samples, it is only 3.27% for 40% of tree bark. Similar results were also observed for TS values. Also, the prediction models were developed using multiple linear regression (MLR). Correlation coefficient (R2) values of models were determined as 0.882, 0.853, and 0.850 for oak, Calabrian pine, and cedar WA values and 0.889, 0.839, and 0.879 for oak, Calabrian pine, and cedar TS values, respectively. The results showed that tree bark has the potential as an alternative to wood flour for WPC production.

Supporting Institution

This study was supported by TUBITAK 2209-A - Research Project Support Programme for Undergraduate Students (Project no: 1919B012201270).

Project Number

Tübitak 2209-A Projesi

References

  • Al Mamun, M., Sohag, K., Mia, M.A.H., Uddin, G.S. and Ozturk, I. (2014). Regional differences in the dynamic linkage between CO2 emissions, sectoral output, and economic growth. Renewable and Sustainable Energy Reviews 38, 1-11. https://doi.org/10.1016/j.rser.2014.05.091
  • ASTM D570-98 (2018). Standard test methods for water absorption of plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D618-21 (2021). Standard practice for conditioning plastics, ASTM International, West Conshohocken, PA, USA.
  • Avci, E., Acar, M., Gonultas, O., and Candan, Z. (2018). Manufacturing biocomposites using black pine bark and oak bark. BioResources 13(1), 15-26. https://doi.org/10.15376/biores.13.1.15-26
  • Borysiuk, P., Boruszewski, P., Auriga, R., Danecki, L., Auriga, A., Rybak, K., and Nowacka, M. (2021). Influence of a bark-filler on the properties of PLA biocomposites. Journal of Materials Science 56, 9196-9208. https://doi.org/10.1007/s10853-021-05901-6
  • Busquets F.M., Solt-Rindler, A., Vay, O., Hansmann, C., and Gindl-Altmutter, W. (2023). Bark based porous materials obtained with a simple mechanical foaming procedure. European Journal of Wood and Wood Products 81(1), 61-71. https://doi.org/10.1007/s00107-022-01856-w
  • Christy, E. O., Soemarno, S., Sumarlan, S.H., and Soehardjono, A. (2020). Pilot study on low-density binderless bark particleboards manufacture from gelam wood (Melaleuca sp.) bark. BioResources 15(4), 7390-7403. https://doi.org/10.15376/biores.15.4.7390-7403
  • Durmaz, S., Kuştaş, S., Özgenç, Ö., and Yildiz, Ü.C. (2016). Bazı Odun Kabuklarının Kimyasal Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 4(2), 438-442.
  • Durmaz, S, Keles Ozgenc, O, Aras, U, Erdil, YZ, and Mengeloglu, F. (2023). The effect of zinc oxide nanoparticles on the weathering performance of wood-plastic composites. Coloration Technology 139( 4), 430- 440. https://doi.org/10.1111/cote.12666
  • Gößwald, J., Barbu, M.C., Petutschnigg, A., and Tudor, E.M. (2021). Binderless Thermal insulation panels made of spruce bark fibres. Polymers 13(11), 1799. https://doi.org/10.3390/polym13111799
  • Hafızoğlu, H., and Usta, M. (2005). Chemical composition of coniferous wood species occurring in Turkey. Holz Roh Werkst 63, 83-85. https://doi.org/10.1007/s00107-004-0539-1
  • Kazemi Najafi, S., Kiaefar, A., and Tajvidi, M. (2008). Effect of bark flour content on the hygroscopic characteristics of wood–polypropylene composites. Journal of applied polymer science 110(5), 3116-3120. https://doi.org/10.1002/app.28852
  • Kim, J.K. and Pal, K. (2010). Recent advances in the processing of wood-plastic composites. London-New York: Springer. Erişim adresi: https://link.springer.com/book/10.1007/978-3-642-14877-4
  • Kofujita, H., Ettyu, K., and Ota, M. (1999). Characterization of the major components in bark from five Japanese tree species for chemical utilization. Wood science and technology 33(3), 223-228. https://doi.org/10.1007/s002260050111
  • Nemli, G., and Çolakoğlu, G. (2005). Effects of mimosa bark usage on some properties of particleboard. Turkish Journal of Agriculture and Forestry 29(3), 227-230.
  • Nemli, G., Gezer, E.D., Yıldız, S., Temiz, A., and Aydın, A. (2006). Evaluation of the mechanical, physical properties and decay resistance of particleboard made from particles impregnated with Pinus brutia bark extractives. Bioresource Technology 97(16), 2059-2064. https://doi.org/10.1016/j.biortech.2005.09.013
  • Ndiwe, B., Pizzi, A., Tibi, B., Danwe, R., Konai, N., and Amirou, S. (2019). African tree bark exudate extracts as biohardeners of fully biosourced thermoset tannin adhesives for wood panels. Industrial crops and products 132, 253-268. https://doi.org/10.1016/j.indcrop.2019.02.023
  • Nimon, K.F., and Oswald, F.L. (2013). Understanding the results of multiple linear regression: Beyond standardized regression coefficients. Organizational Research Methods 16(4), 650-674. https://doi.org/10.1177/1094428113493929
  • OGM (2023). 2022 Yılı İdare Faaliyet Raporu, Ankara: Orman Genel Müdürlüğü, Strateji Geliştirme Dairesi Başkanlığı. Erişim adresi: https://www.ogm.gov.tr/tr/faaliyet-raporu
  • Pandey, S., and Pant, P. (2023). Possibilities and challenges for harnessing tree bark extracts for wood adhesives and green chemicals and its prospects in Nepal. Forest Science and Technology 19(1), 68-77. https://doi.org/10.1080/21580103.2023.2175729
  • Pásztory, Z., and Novotní, A. (2020). The Utilization of Tree Bark as Thermal Insulation Panels and Formaldehyde Absorber. Geosciences and Engineering 8(12), 205-216.
  • Satyanarayana, K. G., Arizaga, G. G., and Wypych, F. (2009). Biodegradable composites based on lignocellulosic fibers—An overview. Progress in polymer science 34(9), 982-1021. https://doi.org/10.1016/j.progpolymsci.2008.12.002
  • Sjostrom, E. Wood chemistry: fundamentals and applications. California-America: Academic Press, (1993).
  • Şahin H. T., Arslan, M. B. (2011). Weathering Performance of Particleboards Manufactured from Blends of Forest Residues with Red Pine (Pinus brutia) Wood. Maderas Ciencia y Tecnología 13, 337–346. http://dx.doi.org/10.4067/S0718-221X2011000300009
  • Vercher, J., Fombuena, V., Diaz, A., and Soriano, M. (2020). Influence of fibre and matrix characteristics on properties and durability of wood–plastic composites in outdoor applications. Journal of Thermoplastic Composite Materials 33(4), 477-500. https://doi.org/10.1177/0892705718807
  • Wenig, C., Dunlop, J. W., Hehemeyer-Cürten, J., Reppe, F. J., Horbelt, N., Krauthausen, K., ... and Eder, M. (2021). Advanced materials design based on waste wood and bark. Philosophical Transactions of the Royal Society A 379(2206), 20200345. https://doi.org/10.1098/rsta.2020.0345
  • Xu, K., Kang, K., Liu, C., Huang, Y., Zhu, G., Zheng, Z., and China, K.P. (2017). The Effects of Expoxidized Soybean Oil on The Mechanical, Water Absorption Thermal Stability and Melting Processing Properties of Wood Plastic Composites. Wood Research 62(5), 795-806.
  • Yemele, M. C. N., Koubaa, A., Cloutier, A., Soulounganga, P., and Wolcott, M. (2010). Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites. Composites Part A: Applied Science and Manufacturing 41(1), 131-137. https://doi.org/10.1016/j.compositesa.2009.06.005

Ağaç kabuklarının Dolgu Maddesi Olarak Odun Plastik Kompozitlerinde Değerlendirilmesi: Deneysel Çalışma ve Modelleme

Year 2024, , 21 - 30, 29.02.2024
https://doi.org/10.24011/barofd.1382084

Abstract

Ağaç kabuğu üretim sırasında oluşan atık malzemelerden biridir. Bu çalışmada ağaç kabuğu OPK üretiminde değerlendirilmiştir. Odun ununa alternatif olarak matrise üç ağaç kabuğu (Meşe, Kızılçam ve Sedir) eklenmiştir. Farklı ağaç kabuğu oranları da (%10, 20, 40) seçilmiştir. Ağaç kabuğu bazlı OPK’lar düz presleme yöntemiyle üretilmiştir. Ağaç kabuğunun su alma (WA) ve kalınlığa şişme (TS) üzerine etkisi 14 gün boyunca incelenmiştir. Ağaç kabuklarının kompozitlerin WA ve TS özellikleri üzerinde önemli bir etkisi vardır. Kabuk içeriği arttıkça WA ve TS değerleri azalmıştır. WA değerleri kontrol örneklerinde %11.27'ye kadar yükselirken, %40 ağaç kabuğunda bu oran sadece %3.27'dir. Benzer sonuçlar TS değerleri için de gözlenmiştir. Ayrıca tahmin modelleri çoklu doğrusal regresyon (MLR) kullanılarak geliştirilmiştir. Modellerin korelasyon katsayısı (R2) değerleri meşe, kızılçam ve sedir WA değerleri için sırasıyla 0.882, 0.853 ve 0.850, meşe, kızılçam ve sedir TS değerleri için ise 0.889, 0.839 ve 0.879 olarak belirleniştir. Sonuçlar, ağaç kabuğunun OPK üretimi için odun ununa alternatif olma potansiyeline sahip olduğunu göstermiştir.

Supporting Institution

Tübitak

Project Number

Tübitak 2209-A Projesi

References

  • Al Mamun, M., Sohag, K., Mia, M.A.H., Uddin, G.S. and Ozturk, I. (2014). Regional differences in the dynamic linkage between CO2 emissions, sectoral output, and economic growth. Renewable and Sustainable Energy Reviews 38, 1-11. https://doi.org/10.1016/j.rser.2014.05.091
  • ASTM D570-98 (2018). Standard test methods for water absorption of plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D618-21 (2021). Standard practice for conditioning plastics, ASTM International, West Conshohocken, PA, USA.
  • Avci, E., Acar, M., Gonultas, O., and Candan, Z. (2018). Manufacturing biocomposites using black pine bark and oak bark. BioResources 13(1), 15-26. https://doi.org/10.15376/biores.13.1.15-26
  • Borysiuk, P., Boruszewski, P., Auriga, R., Danecki, L., Auriga, A., Rybak, K., and Nowacka, M. (2021). Influence of a bark-filler on the properties of PLA biocomposites. Journal of Materials Science 56, 9196-9208. https://doi.org/10.1007/s10853-021-05901-6
  • Busquets F.M., Solt-Rindler, A., Vay, O., Hansmann, C., and Gindl-Altmutter, W. (2023). Bark based porous materials obtained with a simple mechanical foaming procedure. European Journal of Wood and Wood Products 81(1), 61-71. https://doi.org/10.1007/s00107-022-01856-w
  • Christy, E. O., Soemarno, S., Sumarlan, S.H., and Soehardjono, A. (2020). Pilot study on low-density binderless bark particleboards manufacture from gelam wood (Melaleuca sp.) bark. BioResources 15(4), 7390-7403. https://doi.org/10.15376/biores.15.4.7390-7403
  • Durmaz, S., Kuştaş, S., Özgenç, Ö., and Yildiz, Ü.C. (2016). Bazı Odun Kabuklarının Kimyasal Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 4(2), 438-442.
  • Durmaz, S, Keles Ozgenc, O, Aras, U, Erdil, YZ, and Mengeloglu, F. (2023). The effect of zinc oxide nanoparticles on the weathering performance of wood-plastic composites. Coloration Technology 139( 4), 430- 440. https://doi.org/10.1111/cote.12666
  • Gößwald, J., Barbu, M.C., Petutschnigg, A., and Tudor, E.M. (2021). Binderless Thermal insulation panels made of spruce bark fibres. Polymers 13(11), 1799. https://doi.org/10.3390/polym13111799
  • Hafızoğlu, H., and Usta, M. (2005). Chemical composition of coniferous wood species occurring in Turkey. Holz Roh Werkst 63, 83-85. https://doi.org/10.1007/s00107-004-0539-1
  • Kazemi Najafi, S., Kiaefar, A., and Tajvidi, M. (2008). Effect of bark flour content on the hygroscopic characteristics of wood–polypropylene composites. Journal of applied polymer science 110(5), 3116-3120. https://doi.org/10.1002/app.28852
  • Kim, J.K. and Pal, K. (2010). Recent advances in the processing of wood-plastic composites. London-New York: Springer. Erişim adresi: https://link.springer.com/book/10.1007/978-3-642-14877-4
  • Kofujita, H., Ettyu, K., and Ota, M. (1999). Characterization of the major components in bark from five Japanese tree species for chemical utilization. Wood science and technology 33(3), 223-228. https://doi.org/10.1007/s002260050111
  • Nemli, G., and Çolakoğlu, G. (2005). Effects of mimosa bark usage on some properties of particleboard. Turkish Journal of Agriculture and Forestry 29(3), 227-230.
  • Nemli, G., Gezer, E.D., Yıldız, S., Temiz, A., and Aydın, A. (2006). Evaluation of the mechanical, physical properties and decay resistance of particleboard made from particles impregnated with Pinus brutia bark extractives. Bioresource Technology 97(16), 2059-2064. https://doi.org/10.1016/j.biortech.2005.09.013
  • Ndiwe, B., Pizzi, A., Tibi, B., Danwe, R., Konai, N., and Amirou, S. (2019). African tree bark exudate extracts as biohardeners of fully biosourced thermoset tannin adhesives for wood panels. Industrial crops and products 132, 253-268. https://doi.org/10.1016/j.indcrop.2019.02.023
  • Nimon, K.F., and Oswald, F.L. (2013). Understanding the results of multiple linear regression: Beyond standardized regression coefficients. Organizational Research Methods 16(4), 650-674. https://doi.org/10.1177/1094428113493929
  • OGM (2023). 2022 Yılı İdare Faaliyet Raporu, Ankara: Orman Genel Müdürlüğü, Strateji Geliştirme Dairesi Başkanlığı. Erişim adresi: https://www.ogm.gov.tr/tr/faaliyet-raporu
  • Pandey, S., and Pant, P. (2023). Possibilities and challenges for harnessing tree bark extracts for wood adhesives and green chemicals and its prospects in Nepal. Forest Science and Technology 19(1), 68-77. https://doi.org/10.1080/21580103.2023.2175729
  • Pásztory, Z., and Novotní, A. (2020). The Utilization of Tree Bark as Thermal Insulation Panels and Formaldehyde Absorber. Geosciences and Engineering 8(12), 205-216.
  • Satyanarayana, K. G., Arizaga, G. G., and Wypych, F. (2009). Biodegradable composites based on lignocellulosic fibers—An overview. Progress in polymer science 34(9), 982-1021. https://doi.org/10.1016/j.progpolymsci.2008.12.002
  • Sjostrom, E. Wood chemistry: fundamentals and applications. California-America: Academic Press, (1993).
  • Şahin H. T., Arslan, M. B. (2011). Weathering Performance of Particleboards Manufactured from Blends of Forest Residues with Red Pine (Pinus brutia) Wood. Maderas Ciencia y Tecnología 13, 337–346. http://dx.doi.org/10.4067/S0718-221X2011000300009
  • Vercher, J., Fombuena, V., Diaz, A., and Soriano, M. (2020). Influence of fibre and matrix characteristics on properties and durability of wood–plastic composites in outdoor applications. Journal of Thermoplastic Composite Materials 33(4), 477-500. https://doi.org/10.1177/0892705718807
  • Wenig, C., Dunlop, J. W., Hehemeyer-Cürten, J., Reppe, F. J., Horbelt, N., Krauthausen, K., ... and Eder, M. (2021). Advanced materials design based on waste wood and bark. Philosophical Transactions of the Royal Society A 379(2206), 20200345. https://doi.org/10.1098/rsta.2020.0345
  • Xu, K., Kang, K., Liu, C., Huang, Y., Zhu, G., Zheng, Z., and China, K.P. (2017). The Effects of Expoxidized Soybean Oil on The Mechanical, Water Absorption Thermal Stability and Melting Processing Properties of Wood Plastic Composites. Wood Research 62(5), 795-806.
  • Yemele, M. C. N., Koubaa, A., Cloutier, A., Soulounganga, P., and Wolcott, M. (2010). Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites. Composites Part A: Applied Science and Manufacturing 41(1), 131-137. https://doi.org/10.1016/j.compositesa.2009.06.005
There are 28 citations in total.

Details

Primary Language English
Subjects Wood Based Composites
Journal Section Research Articles
Authors

Emre Aksoy 0009-0000-6449-6648

Sefa Durmaz 0000-0002-3880-0033

Ayşenur Gürgen 0000-0002-2263-7323

Uğur Aras 0000-0002-1572-0727

Project Number Tübitak 2209-A Projesi
Early Pub Date February 14, 2024
Publication Date February 29, 2024
Submission Date October 27, 2023
Acceptance Date January 3, 2024
Published in Issue Year 2024

Cite

APA Aksoy, E., Durmaz, S., Gürgen, A., Aras, U. (2024). The Evaluation of Tree Bark as Filler for Wood-Plastic Composites: Experimental Study and Modelling. Bartın Orman Fakültesi Dergisi, 26(1), 21-30. https://doi.org/10.24011/barofd.1382084


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com