An Environmentally Friendly Solvent for Cellulose Acetate Production: Ethyl Lactate
Year 2024,
, 271 - 283, 15.08.2024
Emir Erişir
,
Esat Gümüşkaya
Abstract
The aim of this study was to investigate the possibilities of using biodegradable ethyl lactate instead of acetic acid, the most preferred solvent in industrial production, during cellulose acetate synthesis under certain conditions. In the study, dissolving pulp fibres, which were activated with water and acetic acid respectively, were dispersed in ethyl lactate after pressing and then subjected to acetylation reaction with acetic anhydride catalysed by sulfuric acid. The properties of acetylated cellulose were determined using X-Ray diffraction analysis, Fourier-transform infrared spectroscopy, Differential Scanning Calorimetry and other chemical analysis methods (viscosity, the percentage of bounded acid, chemical resistance). It was determined that it was possible to produce cellulose acetate with a DS value of 2.79 in ethyl lactate at 40°C using dissolving pulp. Fourier-transform infrared spectroscopy studies revealed a characteristic band broadening in the 1739 cm-1 region, indicating the presence of acetyl groups. The results of X-ray diffraction analyses also showed that the crystalline structure of cellulose was completely dispersed and band broadenings on diffractograms occurred. However, the calculation made on X-ray diffractograms also provided interesting findings in terms of crystallite sizes. It was observed that the crystallite sizes of the acetates were higher compared to the dissolving pulp. It was determined that the high crystallinity of the samples posed a problem in terms of processing properties such as dissolution. Among the solvents used, only Dimethylsulfoxide was found to have sufficient dissolving power.
Ethical Statement
No potential conflict of interest was reported by the authors.
Supporting Institution
TUBITAK
Thanks
The study was supported by TUBITAK. Project No: 113O252.
References
- ASTM D 871-96 (2010) Standard Test Methods of Testing Cellulose Acetate. American Society For Testing And Materials, Conshohocken, Pennsylvania.
- Balser, K., Hoppe, L., Eichler, T., Wendel, M., Astheimer, H. –J. and Steinmeier, H. (2000). Cellulose Esters. In: Ullmann’s Enc. of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany pp. 30. https://doi.org/10.1002/14356007.a05_419
- Barud, H. S., de Araújo Júnior, A. M., Santos, D. B., de Assunção, R. M., Meireles, C. S., Cerqueira, D. A., Filho, G. R., Riberio, C. A., Messadeq, Y., Ribeiro, S. J. (2008). Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochimica Acta, 471(1), 61-69. https://doi.org/10.1016/j.tca.2008.02.009
- Bhatti, M. A., Howard, P. (1976). A kinetic study of the acid catalysed degradation of cellulose triacetate in chloroform/acetic anhydride solution. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 177(1), 101-120. https://doi.org/10.1002/macp.1976.021770109
- Buchanan, C. M., Edgar, K. J., Wilson, A. K. (1991). Preparation and characterization of cellulose monoacetates: the relationship between structure and water solubility. Macromolecules, 24(11), 3060-3064. DOI: https://doi.org/10.1021/ma00011a005
- Cerqueira, D. A., Valente, A. J., Guimes Filho, R., Burrows, H. D. (2009). Synthesis and properties of polyaniline–cellulose acetate blends: the use of sugarcane bagasse waste and the effect of the substitution degree. Carbohydrate polymers, 78(3), 402-408. https://doi.org/10.1016/j.carbpol.2009.04.016
- Das, A. M., Ali, A. A., Hazarika, M. P. (2014). Synthesis and characterization of cellulose acetate from rice husk: Eco-friendly condition. Carbohydrate polymers, 112, 342-349. https://doi.org/10.1016/j.carbpol.2014.06.006
- Elidrissi, A., El Barkany, S., Amhamdi, H., Maaroufi, A., & Hammouti, B. (2012). New approach to predict the solubility of polymers. Application: Cellulose acetate at various DS, prepared from alfa “stipa-tenassicima” of eastern morocco. J. Mater. Environ. Sci, 3(2), 270-285.
- Fan, X., Liu, Z.-W., Lu, J. Liu, Z.-T. (2009). Cellulose Triacetate Optical Film Preparation from Ramie Fiber. Industrial & Engineering Chemistry Research, 48, 6212–6215. https://doi.org/10.1021/ie801703x
- Filho, G. R., Monteiro, D. S., da Silva Meireles, C., de Assunção, R. M. N., Cerqueira, D. A., Barud, H. S., Riberio, S. J. L., Messadeq, Y. (2008). Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydrate Polymers, 73(1), 74-82. https://doi.org/10.1016/j.carbpol.2007.11.010
- Gilbert R.D. and Kadla J.F. (1998). Polysaccharides-Cellulose. In: D.L. Kaplan, Editor, Bioploymers from renewable resources. Berlin, Heidenberg, New York: Springer Werlag, pp. 80–82. https://doi.org/10.1007/978-3-662-03680-8_3
- Heinze, T. and Liebert, T. (2004). Chemical characteristics of cellulose acetate. In: Rustemeyer, P., Editor. Cellulose Acetates: Properties and Applications, Macromolecular Symposia 208, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 167-238. https://doi.org/10.1002/masy.200450408
- Heinze, T., Liebert, T. and Koschella, A. (2006). Analysis of polysaccharide structures. In: Esterification of polysaccharides, Chapter 3, Springer Science & Business Media, 15-40. https://doi.org/10.1007/3-540-32112-8_3
- Hu, W., Chen, S., Xu, Q., Wang, H. (2011). Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydrate Polymers, 83(4), 1575-1581. https://doi.org/10.1016/j.carbpol.2010.10.016
- Hurtubise, F. G. (1962). The analytical and structural aspects of the infrared spectroscopy of cellulose acetate. Tappi, 45, 6.
- Kamide, K., Saito, M. (1985). Thermal analysis of cellulose acetate solids with total degrees of substitution of 0.49, 1.75, 2.46, and 2.92. Polymer Journal, 17(8), 919.
- Klemm D., Phillip B., Heinze T., Heinze U. and Wagenknetch W. (1998). Analytical methods in cellulose chemistry. In Comprehensive cellulose chemistry; Volume I: Fundamentals and Analytical Methods, Weinheim: Wiley, pp. 188. https://doi.org/10.1002/3527601929
- Liebert, T. (2010). Cellulose solvents-remarkable history, bright future, Cellulose Solvents: for Analysis, Shaping and Chemical Modification, ACS symposium series Oxford University Press (pp 3-54). https://doi.org/10.1021/bk-2010-1033.ch001
- Mark, H. (2004). Cellulose Esters, Organic. In: Mark, H., Editor. Encyclopedia of Polymer Science and Technology, 3rd ed., John Wiley & Sons, Inc., 9, pp. 129. https://doi.org/10.1016/10.1002/0471440264
- Medrano-García, J. D., Ruiz-Femenia, R., Caballero, J. A. (2019). Revisiting classic acetic acid synthesis: optimal hydrogen consumption and carbon dioxide utilization. Computer Aided Chemical Engineering, 46, 145-150. https://doi.org/10.1016/B978-0-12-818634-3.50025-4
- Merli, G., Becci, A., Amato, A., Beolchini, F. (2021). Acetic acid bioproduction: The technological innovation change. Science of the Total Environment, 798, 149292. https://doi.org/10.1016/j.scitotenv.2021.149292
- Pereira, C. S., Silva, V. M., Rodrigues, A. E. (2011). Ethyl lactate as a solvent: Properties, applications and production processes–a review. Green Chemistry, 13(10), 2658-2671. https://doi.org/10.1039/C1GC15523G
- Pethrick, R. A., Wilton, A. M. (2013). Plasticization of fibrous cellulose acetate: Part I–synthesis and characterization. International Journal of Polymeric Materials and Polymeric Biomaterials, 62(4), 181-189.
- Pintaric, B., Rogošić, M., Mencer, H. J. (2000). Dilute solution properties of cellulose diacetate in mixed solvents. Journal of Molecular Liquids, 85(3), 331-350. https://doi.org/10.1016/S0167-7322(00)89017-0
- Popescu, C. M., Larsson, P. T., Olaru, N., Vasile, C. (2012). Spectroscopic study of acetylated kraft pulp fibers. Carbohydrate Polymers, 88(2), 530-536. https://doi.org/10.1016/j.carbpol.2011.12.046
- Sassi, J. F., Chanzy, H. (1995). Ultrastructural aspects of the acetylation of cellulose. Cellulose, 2, 111-127. https://doi.org/10.1007/BF00816384
- Segal, L. G. J. M. A., Creely, J. J., Martin Jr., A. E., Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile research journal, 29(10), 786-794. https://doi.org/10.1177/004051755902901003
- Shaikh, H. M., Pandare, K. V., Nair, G., Varma, A. J. (2009). Utilization of sugarcane bagasse cellulose for producing cellulose acetates: Novel use of residual hemicellulose as plasticizer. Carbohydrate Polymers, 76(1), 23-29. https://doi.org/10.1016/j.carbpol.2008.09.014
- Steinmeier, H. (2004). Acetate Manufacturing, Process and Technology. In: Rustemeyer, P., Editor. Cellulose Acetates: Properties and Applications, Macromolecular Symposia 208, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 49-60. https://doi.org/10.1002/masy.200450405
- TAPPI T 230 om-08 (2008) Viscosity of pulp (capillary viscometer method).
- TAPPI T 236 om-13 (2013) Kappa number of pulp.
- TAPPI T203 cm99 (1999) Alpha beta and gamma cellulose in pulp.
- TAPPI T235 cm-00 (2000) Alkali solubility of pulp at 25°C.
- Zhang, G., Huang, K., Jiang, X., Huang, D., Yang, Y. (2013). Acetylation of rice straw for thermoplastic applications. Carbohydrate Polymers, 96(1), 218-226. https://doi.org/10.1016/j.carbpol.2013.03.069
Selüloz Asetat Üretimi İçin Çevre Dostu Bir Çözücü Seçeneği: Etil Laktat
Year 2024,
, 271 - 283, 15.08.2024
Emir Erişir
,
Esat Gümüşkaya
Abstract
Bu çalışmanın amacı, selüloz asetat sentezi sırasında endüstriyel üretimde en çok tercih edilen çözücü olan asetik asidin yerine biyobozunur etil laktatın kullanım olanaklarını belirli koşullar altında araştırmaktır. Çalışma sürecinde, sırasıyla su ve asetik asit ile ön işlemlere (aktivasyona) uğratılmış çözünür hamur lifleri, preslendikten sonra etil laktat içinde dağıtılmış ve ardından sülfürik asit katalizörlüğünde asetik anhidrit ile asetilasyon reaksiyonuna tabi tutulmuştur. Asetillenmiş selülozun özellikleri X-ışını kırınım analizleri, Fourier-transform kızılötesi spektroskopisi ve diğer kimyasal analiz yöntemleri (viskozite, bağlı asit yüzdesi) kullanılarak belirlenmiştir. Çözünür hamuru kullanılarak 40°C'de etil laktat içinde 2,79 DS değerine sahip selüloz asetat üretmenin mümkün olduğu belirlenmiştir. Fourier-transform kızılötesi spektroskopisi çalışmaları, asetil gruplarının varlığını gösteren 1739 cm-1 bölgesinde karakteristik bir bant genişlemesi ortaya çıkarmıştır. X-ışını kırınım analizlerinin sonuçları da selülozun kristal yapısının tamamen dağıldığını ve difraktogramlarda bant genişlemelerinin meydana geldiğini göstermiştir. Bununla birlikte, X-ışını difraktogramları üzerinde yapılan hesaplama kristalit boyutları açısından da ilginç bulgular sağlamıştır. Asetatların kristalit boyutlarının çözünür hamura kıyasla daha yüksek olduğu görülmüştür. Numunelerin yüksek kristalinitesinin çözünme gibi işleme özellikleri açısından bir sorun teşkil ettiği belirlenmiştir. Kullanılan çözücüler arasında yalnızca Dimetilsülfoksitin yeterli çözme gücüne sahip olduğu görülmüştür.
References
- ASTM D 871-96 (2010) Standard Test Methods of Testing Cellulose Acetate. American Society For Testing And Materials, Conshohocken, Pennsylvania.
- Balser, K., Hoppe, L., Eichler, T., Wendel, M., Astheimer, H. –J. and Steinmeier, H. (2000). Cellulose Esters. In: Ullmann’s Enc. of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany pp. 30. https://doi.org/10.1002/14356007.a05_419
- Barud, H. S., de Araújo Júnior, A. M., Santos, D. B., de Assunção, R. M., Meireles, C. S., Cerqueira, D. A., Filho, G. R., Riberio, C. A., Messadeq, Y., Ribeiro, S. J. (2008). Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochimica Acta, 471(1), 61-69. https://doi.org/10.1016/j.tca.2008.02.009
- Bhatti, M. A., Howard, P. (1976). A kinetic study of the acid catalysed degradation of cellulose triacetate in chloroform/acetic anhydride solution. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 177(1), 101-120. https://doi.org/10.1002/macp.1976.021770109
- Buchanan, C. M., Edgar, K. J., Wilson, A. K. (1991). Preparation and characterization of cellulose monoacetates: the relationship between structure and water solubility. Macromolecules, 24(11), 3060-3064. DOI: https://doi.org/10.1021/ma00011a005
- Cerqueira, D. A., Valente, A. J., Guimes Filho, R., Burrows, H. D. (2009). Synthesis and properties of polyaniline–cellulose acetate blends: the use of sugarcane bagasse waste and the effect of the substitution degree. Carbohydrate polymers, 78(3), 402-408. https://doi.org/10.1016/j.carbpol.2009.04.016
- Das, A. M., Ali, A. A., Hazarika, M. P. (2014). Synthesis and characterization of cellulose acetate from rice husk: Eco-friendly condition. Carbohydrate polymers, 112, 342-349. https://doi.org/10.1016/j.carbpol.2014.06.006
- Elidrissi, A., El Barkany, S., Amhamdi, H., Maaroufi, A., & Hammouti, B. (2012). New approach to predict the solubility of polymers. Application: Cellulose acetate at various DS, prepared from alfa “stipa-tenassicima” of eastern morocco. J. Mater. Environ. Sci, 3(2), 270-285.
- Fan, X., Liu, Z.-W., Lu, J. Liu, Z.-T. (2009). Cellulose Triacetate Optical Film Preparation from Ramie Fiber. Industrial & Engineering Chemistry Research, 48, 6212–6215. https://doi.org/10.1021/ie801703x
- Filho, G. R., Monteiro, D. S., da Silva Meireles, C., de Assunção, R. M. N., Cerqueira, D. A., Barud, H. S., Riberio, S. J. L., Messadeq, Y. (2008). Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydrate Polymers, 73(1), 74-82. https://doi.org/10.1016/j.carbpol.2007.11.010
- Gilbert R.D. and Kadla J.F. (1998). Polysaccharides-Cellulose. In: D.L. Kaplan, Editor, Bioploymers from renewable resources. Berlin, Heidenberg, New York: Springer Werlag, pp. 80–82. https://doi.org/10.1007/978-3-662-03680-8_3
- Heinze, T. and Liebert, T. (2004). Chemical characteristics of cellulose acetate. In: Rustemeyer, P., Editor. Cellulose Acetates: Properties and Applications, Macromolecular Symposia 208, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 167-238. https://doi.org/10.1002/masy.200450408
- Heinze, T., Liebert, T. and Koschella, A. (2006). Analysis of polysaccharide structures. In: Esterification of polysaccharides, Chapter 3, Springer Science & Business Media, 15-40. https://doi.org/10.1007/3-540-32112-8_3
- Hu, W., Chen, S., Xu, Q., Wang, H. (2011). Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydrate Polymers, 83(4), 1575-1581. https://doi.org/10.1016/j.carbpol.2010.10.016
- Hurtubise, F. G. (1962). The analytical and structural aspects of the infrared spectroscopy of cellulose acetate. Tappi, 45, 6.
- Kamide, K., Saito, M. (1985). Thermal analysis of cellulose acetate solids with total degrees of substitution of 0.49, 1.75, 2.46, and 2.92. Polymer Journal, 17(8), 919.
- Klemm D., Phillip B., Heinze T., Heinze U. and Wagenknetch W. (1998). Analytical methods in cellulose chemistry. In Comprehensive cellulose chemistry; Volume I: Fundamentals and Analytical Methods, Weinheim: Wiley, pp. 188. https://doi.org/10.1002/3527601929
- Liebert, T. (2010). Cellulose solvents-remarkable history, bright future, Cellulose Solvents: for Analysis, Shaping and Chemical Modification, ACS symposium series Oxford University Press (pp 3-54). https://doi.org/10.1021/bk-2010-1033.ch001
- Mark, H. (2004). Cellulose Esters, Organic. In: Mark, H., Editor. Encyclopedia of Polymer Science and Technology, 3rd ed., John Wiley & Sons, Inc., 9, pp. 129. https://doi.org/10.1016/10.1002/0471440264
- Medrano-García, J. D., Ruiz-Femenia, R., Caballero, J. A. (2019). Revisiting classic acetic acid synthesis: optimal hydrogen consumption and carbon dioxide utilization. Computer Aided Chemical Engineering, 46, 145-150. https://doi.org/10.1016/B978-0-12-818634-3.50025-4
- Merli, G., Becci, A., Amato, A., Beolchini, F. (2021). Acetic acid bioproduction: The technological innovation change. Science of the Total Environment, 798, 149292. https://doi.org/10.1016/j.scitotenv.2021.149292
- Pereira, C. S., Silva, V. M., Rodrigues, A. E. (2011). Ethyl lactate as a solvent: Properties, applications and production processes–a review. Green Chemistry, 13(10), 2658-2671. https://doi.org/10.1039/C1GC15523G
- Pethrick, R. A., Wilton, A. M. (2013). Plasticization of fibrous cellulose acetate: Part I–synthesis and characterization. International Journal of Polymeric Materials and Polymeric Biomaterials, 62(4), 181-189.
- Pintaric, B., Rogošić, M., Mencer, H. J. (2000). Dilute solution properties of cellulose diacetate in mixed solvents. Journal of Molecular Liquids, 85(3), 331-350. https://doi.org/10.1016/S0167-7322(00)89017-0
- Popescu, C. M., Larsson, P. T., Olaru, N., Vasile, C. (2012). Spectroscopic study of acetylated kraft pulp fibers. Carbohydrate Polymers, 88(2), 530-536. https://doi.org/10.1016/j.carbpol.2011.12.046
- Sassi, J. F., Chanzy, H. (1995). Ultrastructural aspects of the acetylation of cellulose. Cellulose, 2, 111-127. https://doi.org/10.1007/BF00816384
- Segal, L. G. J. M. A., Creely, J. J., Martin Jr., A. E., Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile research journal, 29(10), 786-794. https://doi.org/10.1177/004051755902901003
- Shaikh, H. M., Pandare, K. V., Nair, G., Varma, A. J. (2009). Utilization of sugarcane bagasse cellulose for producing cellulose acetates: Novel use of residual hemicellulose as plasticizer. Carbohydrate Polymers, 76(1), 23-29. https://doi.org/10.1016/j.carbpol.2008.09.014
- Steinmeier, H. (2004). Acetate Manufacturing, Process and Technology. In: Rustemeyer, P., Editor. Cellulose Acetates: Properties and Applications, Macromolecular Symposia 208, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 49-60. https://doi.org/10.1002/masy.200450405
- TAPPI T 230 om-08 (2008) Viscosity of pulp (capillary viscometer method).
- TAPPI T 236 om-13 (2013) Kappa number of pulp.
- TAPPI T203 cm99 (1999) Alpha beta and gamma cellulose in pulp.
- TAPPI T235 cm-00 (2000) Alkali solubility of pulp at 25°C.
- Zhang, G., Huang, K., Jiang, X., Huang, D., Yang, Y. (2013). Acetylation of rice straw for thermoplastic applications. Carbohydrate Polymers, 96(1), 218-226. https://doi.org/10.1016/j.carbpol.2013.03.069