Review
BibTex RIS Cite

Composite Materials And Fibers Used In Ballistic Panel And Protective Armor Production

Year 2016, , 194 - 204, 15.12.2016
https://doi.org/10.24011/barofd.267304

Abstract

All living
things need to protect themselves against attacks from outside world
instinctively. And likewise, throughout history human beings not only have
taken precautions against environmental factors but also against attacks from
enemies. These precautions include precautions against leather, metal and
metal derivatives, ditches, city walls and castles. And today, the combination
of light fabrics having high resistance and elasticity with polymers forms the
basis for ballistic panel and armour production. Investments in the area of
ballistics, particularly military investments, as well as academic and military
studies, indicate the significance of the issue. This study examines the
characteristics of the composites used in ballistic panel and personal protective
armour production; the combinations of the protectors made of composite
materials and the ballistic tests applied to these protectors. This study which
is a collection of the existing studies by examining them will provide
literature support for studies on ballistic.

References

  • Afshari, M., Kotek, R. and C hen, P. 2011. High Performance Fibers. High Performance Polymers and Engineering Plastics, 269-340.
  • Afshari, M., Sikkema, D. J., Lee, K. and Bogle, M. 2008. High Performance Fibers Based On Rigid and Flexible Polymers. Polymer Reviews, 48(2), 230-274.
  • Amma, A. and Mulcahy, K.A., EI Du Pont De Nemours, 2010. Pulp comprising polypyridobisimidazole and other polymers and methods of making same. U.S. Patent 7,727,358.
  • Behera, B. K. and Dash, B. P. 2013. An Experimental Investigation into Structure and Properties of 3D-Woven Aramid and PBO Fabrics. The Journal of The Textile Institute, 104(12), 1337-1344.
  • Bazhenov S. Dissipation of energy by bulletproof aramid fabric. J Mater Sci 1997;32(15):4167–73.
  • Bozdoğan, F., Üngün, S., Temel, E. and Mengüç, G.S., 2015. Balistik Koruma Amaçlı Kullanılan Tekstil Materyalleri, Özellikleri ve Balistik Performans Testleri. 2015 (Cilt: 22), 98.
  • Briscoe BJ, Motamedi F. The ballistic impact characteristics of aramid fabrics: the influence of interface friction. Wear1992;158:229–47.
  • Candan, C. 2005. Zırh Teknolojilerindeki Gelişmeler. Zırh Teknolojileri Semineri, Ankara, Milli Savunma Bakanlığı Arge ve Teknoloji Daire Başkanlığı.
  • Cavallaro, P.V. 2011. Soft Body Armor: An Overview of Materials, Manufacturing, Testing, and Ballistic Impact Dynamics, Naval Undersea Warfare Center Division Newport.
  • Csukat, G.F. 2006. A Study on The Ballistic Performance of Composites, Macromol Symposia, 239: p. 217–226.
  • Deka, B. K. and Maji, T. K. 2011. Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Composites Part A: Applied Science and Manufacturing. 42(12), 2117-2125.
  • Duan, Y., Keefe, M., Bogetti, T. A. and Cheeseman, B. A. 2005. Modeling The Role of Friction During Ballistic Impact of a High-Strength Plain-Weave Fabric. Composite Structures, 68, 331–337.
  • Dunn, C.S., Stanhope, M.T., Laton, M.A. and Truesdale III, R.J., Dunn Charles S, Stanhope Michael T, Laton Michael A and Truesdale Iii Rembert J, 2006. Flame resistant fabric having antimicrobials and methods for making them. U.S. Patent Application 11/637,648.
  • Ha-Minh, C., Boussu, F., Kanit, T., Crépin, D. and Imad, A. 2012. Effect of Frictions on The Ballistic Performance of a 3D Warp Interlock Fabric: Numerical Analysis. Applied Composite Materials, 19(3-4), 333-347.
  • Iannucci, L. and Pope, D. 2011. High Velocity Impact and Armour Design, Express Polymer Letters, 5, 262–272.
  • Jacobs, M. J. N. and Van Dingenen, J. L. J. 2001. Ballistic Protection Mechanisms in Personal Armour. Journal of Materials Science, 36(13), 3137-3142.
  • Jordan, J. B. and Naito, C. J. 2014. An Experimental Investigation of The Effect of Nose Shape on Fragments Penetrating GFRP. International Journal Of Impact Engineering, 63, 63-71.
  • Jovicic, J. M. 2003. Numerical Modeling and Analysis of Static and Ballistic Behavior of Multi-Layered/Multiphase Composite Materials Using Detailed Microstructural Discretization (Doctoral Dissertation, Drexel University).
  • Karahan, G. 2008. Balistik Yapılarda Balistik Performansı Etkileyen Parametrelerin İncelenmesi, Tekstil Teknolojileri Dergisi, 3, 51-58.
  • Kılıç, N. 2014. Development of Multi-Layer Ballistic Armor Panel with Simulation and Ballistic Tests. Marmara University, Department of Mechanical Engineering. Ph. D. Thesis.
  • Kitagawa, T., Murase, H. and Yabuki, K. 1998. Morphological Study on Poly‐p‐phenylenebenzobisoxazole (PBO) Fiber. Journal of Polymer Science Part B: Polymer Physics, 36(1), 39-48.
  • Ko, F. and Geshury, A. 2002. Textile Preforms for Composite Materials Processing, Advanced Materials and Processes Information Analysis Center, AMPT-19.
  • Lane, R. A. 2005. High Performance Fibers for Personnel And Vehicle Armor Systems, Amptiac Quarterly, 5, 1-10.
  • Lin, L. and Bhatnagar, A. 1992. Ballistic Energy Absorpstion of Composite-III, 24th International SAMPE Technical Conference. p. 291-306.
  • Liu, S., Wang, J., Wang, Y. and Wang, Y. 2010. Improving The Ballistic Performance of Ultra High Molecular Weight Polyethylene Fiber Reinforced Composites Using Conch Particles. Materials & Design, 31(4), 1711-1715.
  • Mathur, A. and Netravali, A. N. 1996. Modification of Mechanical Properties of Kevlar Fibre by Polymer Infiltration. Journal of Materials Science, 31(5), 1265-1274.
  • Naik, N. K. and Doshi, A. V. 2008. Ballistic Impact Behaviour of Thick Composites: Parametric Studies. Composite Structures, 82(3), 447-464.
  • Nilakantan, G. and Gillespie, J. W. 2012. Ballistic Impact Modeling of Woven Fabrics Considering Yarn Strength, Friction, Projectile Impact Location, and Fabric Boundary Condition Effects. Composite Structures, 94(12), 3624-3634.
  • Nilakantan, G., Wetzel, E. D., Bogetti, T. A. and Gillespie, J. W. 2013. A Deterministic Finite Element Analysis of The Effects of Projectile Characteristics on The Impact Response of Fully Clamped Flexible Woven Fabrics. Composite Structures, 95, 191-201.
  • Powell, D.A. and Zohdi, T.I., 2009. Attachment mode performance of network-modeled ballistic fabric shielding. Composites Part B: Engineering, 40(6), pp.451-460.
  • Roylance, D. 1980. Stress Wave Propagation in Fibers-Effects of Cross Overs, Fibre Science Technoloji, 13(5), 385–395.
  • Seely, L., Zimmerman, M. and Mclaughlin, J. 2004. The Use of Zylon Fibers in Uldb Tendons, Advances in Space Research, 33(10), 1736-1740.
  • Shi, W., Hu, H., B, Sun., B. and Gu, B. 2011. Energy Absorption of 3D Orthogonal Woven Fabric Under Ballistic Penetration of Hemispherical‐Cylindrical Projectile. The Journal of The Textile Institute 102(10), 875–889.
  • Tabiei, A. and Nilakantan, G. 2008. Ballistic Impact of Dry Woven Fabric Composites: A Review, Applied Mechanics Reviews, 61, 010801-12.
  • Tan, V. B. C., Lim, C. T. and Cheong, C. H. 2003. Perforation of High-Strength Fabric by Projectiles of Different Geometry. International Journal of Impact Engineering, 28, 207–222
  • Tatsumi, T., Fukuda, S. and Kadomura, S. 1994. Radiation damage of SiO2 surface induced by vacuum ultraviolet photons of high-density plasma. Japanese journal of applied physics, 33(4S), 2175.
  • URL-1. http://www.coastalwindsports.com/WhoseLine.html (Alıntının yapıldığı tarih:10.10.2016)
  • Wall, J.W., 2002, An Investıgatıon of The Ballistic Impact Resistance of Modified 2x1, Four-Step, Three-Dimensionally Braided Composites with Axial Reinforcement, Master of Science, Graduate Faculty of North Carolina State University, Carolina.
  • Wallenberger, F. T., Watson, J. C., and Li, H. 2001. Glass Fibers. Materials Park, OH: ASM International, 27-34.
  • Walling, S. J. 1985. S-2 Glass Fiber: Its Role in Military Applications, International Conference on Composite Materials, Metallurgical Society of AIME, August 1985, p. 443-456
  • Yang, D. 2011. Design, Performance and Fit of Fabrics for Female Body Armour, The Degree of Doctor of Philosophy, Faculty of Engineering and Physical Sciences.
  • Yang, H. H. 1993. Kevlar Aramid Fiber. John Wiley & Sons.
  • Yumak, N., Pekbey, Y. and Aslantaş, K. 2013. Zırh Tasarımında Kullanılan Kompozit Malzemelerin Deformasyon Karakteristiğinin Araştırılması. Makine Teknolojileri Elektronik Dergisi, 10(4), 1-21.
  • Zhang, A.D., Sun, Y.A., Chen L., Zhang, S. and Pan, N., 2014b, Influence of Fabric Structure and Thickness on The Ballistic Impact Behavior of Ultrahigh Molecular Weight Polyethylene Composite Laminate. Materials and Design, 54, 315–322.
  • Zhang, C. H., Huang, Y. D., Yuan, W. J. and Zhang, J. N. 2011. UV Aging Resistance Properties of PBO Fiber Coated with Nano‐Zno Hybrid Sizing. Journal of Applied Polymer Science, 120(4), 2468-2476.
  • Zhang, Q., Fang, X., Sun, X., Sun, B. and Qiu, Y. 2014a. Comparison of The Mechanical Properties Between 2D and 3D Orthogonal Woven Ramie Fiber Reinforced Polypropylene Composites. Polymers & Polymer Composites, 22(2), 187.

Balistik Panel ve Koruyucu Zırh Üretiminde Kullanılan Lif ve Kompozit Malzemeler

Year 2016, , 194 - 204, 15.12.2016
https://doi.org/10.24011/barofd.267304

Abstract

Her canlı varlık, dışarıdan gelebilecek
saldırılara karşı içgüdüsel olarak korunma ihtiyacı hissetmektedir. Insanoğlu
da tarih boyunca çevresel faktörlere karşı önlem aldığı gibi, düşmanlardan
gelebilecek saldırılara da önlemler almıştır. Bu önlemler metal ve metal
türevlerinden başlayarak, hendekler, surlar ve kaleler olarak devam etmiştir. Günümüzde
ise, teknolijinin gelişmesiyle ortaya çıkan yüksek direnç ve elastikiyet özelliklerine
sahip hafif kumaşların polimerlerle kombinasyonları, balistik panel ve zırh
üretiminin temelini oluşturmaktadır. Askeri alanlar başta olmak üzere balistik
alanında yapılan yatırım , akademik ve askeri çalışmalar, bu konunun önemini
ortaya koymaktadır. Bu çalışmada, balistik panel ve kişisel koruyucu zırh
üretiminde kullanılan kompozit malzemelerin özellikleri, kompozit malzemeler
ile elde edilen koruyucuların kombinasyonları ve bu koruyuculara uygulanan
balistik testler incelenmiştir. Yapılan çalışmaların irdelenerek derlenmesiyle
oluşan bu çalışma, balistik alanında yapılacak çalışmalara literatür desteği
sağlayacaktır.

References

  • Afshari, M., Kotek, R. and C hen, P. 2011. High Performance Fibers. High Performance Polymers and Engineering Plastics, 269-340.
  • Afshari, M., Sikkema, D. J., Lee, K. and Bogle, M. 2008. High Performance Fibers Based On Rigid and Flexible Polymers. Polymer Reviews, 48(2), 230-274.
  • Amma, A. and Mulcahy, K.A., EI Du Pont De Nemours, 2010. Pulp comprising polypyridobisimidazole and other polymers and methods of making same. U.S. Patent 7,727,358.
  • Behera, B. K. and Dash, B. P. 2013. An Experimental Investigation into Structure and Properties of 3D-Woven Aramid and PBO Fabrics. The Journal of The Textile Institute, 104(12), 1337-1344.
  • Bazhenov S. Dissipation of energy by bulletproof aramid fabric. J Mater Sci 1997;32(15):4167–73.
  • Bozdoğan, F., Üngün, S., Temel, E. and Mengüç, G.S., 2015. Balistik Koruma Amaçlı Kullanılan Tekstil Materyalleri, Özellikleri ve Balistik Performans Testleri. 2015 (Cilt: 22), 98.
  • Briscoe BJ, Motamedi F. The ballistic impact characteristics of aramid fabrics: the influence of interface friction. Wear1992;158:229–47.
  • Candan, C. 2005. Zırh Teknolojilerindeki Gelişmeler. Zırh Teknolojileri Semineri, Ankara, Milli Savunma Bakanlığı Arge ve Teknoloji Daire Başkanlığı.
  • Cavallaro, P.V. 2011. Soft Body Armor: An Overview of Materials, Manufacturing, Testing, and Ballistic Impact Dynamics, Naval Undersea Warfare Center Division Newport.
  • Csukat, G.F. 2006. A Study on The Ballistic Performance of Composites, Macromol Symposia, 239: p. 217–226.
  • Deka, B. K. and Maji, T. K. 2011. Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Composites Part A: Applied Science and Manufacturing. 42(12), 2117-2125.
  • Duan, Y., Keefe, M., Bogetti, T. A. and Cheeseman, B. A. 2005. Modeling The Role of Friction During Ballistic Impact of a High-Strength Plain-Weave Fabric. Composite Structures, 68, 331–337.
  • Dunn, C.S., Stanhope, M.T., Laton, M.A. and Truesdale III, R.J., Dunn Charles S, Stanhope Michael T, Laton Michael A and Truesdale Iii Rembert J, 2006. Flame resistant fabric having antimicrobials and methods for making them. U.S. Patent Application 11/637,648.
  • Ha-Minh, C., Boussu, F., Kanit, T., Crépin, D. and Imad, A. 2012. Effect of Frictions on The Ballistic Performance of a 3D Warp Interlock Fabric: Numerical Analysis. Applied Composite Materials, 19(3-4), 333-347.
  • Iannucci, L. and Pope, D. 2011. High Velocity Impact and Armour Design, Express Polymer Letters, 5, 262–272.
  • Jacobs, M. J. N. and Van Dingenen, J. L. J. 2001. Ballistic Protection Mechanisms in Personal Armour. Journal of Materials Science, 36(13), 3137-3142.
  • Jordan, J. B. and Naito, C. J. 2014. An Experimental Investigation of The Effect of Nose Shape on Fragments Penetrating GFRP. International Journal Of Impact Engineering, 63, 63-71.
  • Jovicic, J. M. 2003. Numerical Modeling and Analysis of Static and Ballistic Behavior of Multi-Layered/Multiphase Composite Materials Using Detailed Microstructural Discretization (Doctoral Dissertation, Drexel University).
  • Karahan, G. 2008. Balistik Yapılarda Balistik Performansı Etkileyen Parametrelerin İncelenmesi, Tekstil Teknolojileri Dergisi, 3, 51-58.
  • Kılıç, N. 2014. Development of Multi-Layer Ballistic Armor Panel with Simulation and Ballistic Tests. Marmara University, Department of Mechanical Engineering. Ph. D. Thesis.
  • Kitagawa, T., Murase, H. and Yabuki, K. 1998. Morphological Study on Poly‐p‐phenylenebenzobisoxazole (PBO) Fiber. Journal of Polymer Science Part B: Polymer Physics, 36(1), 39-48.
  • Ko, F. and Geshury, A. 2002. Textile Preforms for Composite Materials Processing, Advanced Materials and Processes Information Analysis Center, AMPT-19.
  • Lane, R. A. 2005. High Performance Fibers for Personnel And Vehicle Armor Systems, Amptiac Quarterly, 5, 1-10.
  • Lin, L. and Bhatnagar, A. 1992. Ballistic Energy Absorpstion of Composite-III, 24th International SAMPE Technical Conference. p. 291-306.
  • Liu, S., Wang, J., Wang, Y. and Wang, Y. 2010. Improving The Ballistic Performance of Ultra High Molecular Weight Polyethylene Fiber Reinforced Composites Using Conch Particles. Materials & Design, 31(4), 1711-1715.
  • Mathur, A. and Netravali, A. N. 1996. Modification of Mechanical Properties of Kevlar Fibre by Polymer Infiltration. Journal of Materials Science, 31(5), 1265-1274.
  • Naik, N. K. and Doshi, A. V. 2008. Ballistic Impact Behaviour of Thick Composites: Parametric Studies. Composite Structures, 82(3), 447-464.
  • Nilakantan, G. and Gillespie, J. W. 2012. Ballistic Impact Modeling of Woven Fabrics Considering Yarn Strength, Friction, Projectile Impact Location, and Fabric Boundary Condition Effects. Composite Structures, 94(12), 3624-3634.
  • Nilakantan, G., Wetzel, E. D., Bogetti, T. A. and Gillespie, J. W. 2013. A Deterministic Finite Element Analysis of The Effects of Projectile Characteristics on The Impact Response of Fully Clamped Flexible Woven Fabrics. Composite Structures, 95, 191-201.
  • Powell, D.A. and Zohdi, T.I., 2009. Attachment mode performance of network-modeled ballistic fabric shielding. Composites Part B: Engineering, 40(6), pp.451-460.
  • Roylance, D. 1980. Stress Wave Propagation in Fibers-Effects of Cross Overs, Fibre Science Technoloji, 13(5), 385–395.
  • Seely, L., Zimmerman, M. and Mclaughlin, J. 2004. The Use of Zylon Fibers in Uldb Tendons, Advances in Space Research, 33(10), 1736-1740.
  • Shi, W., Hu, H., B, Sun., B. and Gu, B. 2011. Energy Absorption of 3D Orthogonal Woven Fabric Under Ballistic Penetration of Hemispherical‐Cylindrical Projectile. The Journal of The Textile Institute 102(10), 875–889.
  • Tabiei, A. and Nilakantan, G. 2008. Ballistic Impact of Dry Woven Fabric Composites: A Review, Applied Mechanics Reviews, 61, 010801-12.
  • Tan, V. B. C., Lim, C. T. and Cheong, C. H. 2003. Perforation of High-Strength Fabric by Projectiles of Different Geometry. International Journal of Impact Engineering, 28, 207–222
  • Tatsumi, T., Fukuda, S. and Kadomura, S. 1994. Radiation damage of SiO2 surface induced by vacuum ultraviolet photons of high-density plasma. Japanese journal of applied physics, 33(4S), 2175.
  • URL-1. http://www.coastalwindsports.com/WhoseLine.html (Alıntının yapıldığı tarih:10.10.2016)
  • Wall, J.W., 2002, An Investıgatıon of The Ballistic Impact Resistance of Modified 2x1, Four-Step, Three-Dimensionally Braided Composites with Axial Reinforcement, Master of Science, Graduate Faculty of North Carolina State University, Carolina.
  • Wallenberger, F. T., Watson, J. C., and Li, H. 2001. Glass Fibers. Materials Park, OH: ASM International, 27-34.
  • Walling, S. J. 1985. S-2 Glass Fiber: Its Role in Military Applications, International Conference on Composite Materials, Metallurgical Society of AIME, August 1985, p. 443-456
  • Yang, D. 2011. Design, Performance and Fit of Fabrics for Female Body Armour, The Degree of Doctor of Philosophy, Faculty of Engineering and Physical Sciences.
  • Yang, H. H. 1993. Kevlar Aramid Fiber. John Wiley & Sons.
  • Yumak, N., Pekbey, Y. and Aslantaş, K. 2013. Zırh Tasarımında Kullanılan Kompozit Malzemelerin Deformasyon Karakteristiğinin Araştırılması. Makine Teknolojileri Elektronik Dergisi, 10(4), 1-21.
  • Zhang, A.D., Sun, Y.A., Chen L., Zhang, S. and Pan, N., 2014b, Influence of Fabric Structure and Thickness on The Ballistic Impact Behavior of Ultrahigh Molecular Weight Polyethylene Composite Laminate. Materials and Design, 54, 315–322.
  • Zhang, C. H., Huang, Y. D., Yuan, W. J. and Zhang, J. N. 2011. UV Aging Resistance Properties of PBO Fiber Coated with Nano‐Zno Hybrid Sizing. Journal of Applied Polymer Science, 120(4), 2468-2476.
  • Zhang, Q., Fang, X., Sun, X., Sun, B. and Qiu, Y. 2014a. Comparison of The Mechanical Properties Between 2D and 3D Orthogonal Woven Ramie Fiber Reinforced Polypropylene Composites. Polymers & Polymer Composites, 22(2), 187.
There are 46 citations in total.

Details

Journal Section Articles
Authors

Eser Sozen

Gokhan Gunduz

Erol Imren

Publication Date December 15, 2016
Published in Issue Year 2016

Cite

APA Sozen, E., Gunduz, G., & Imren, E. (2016). Balistik Panel ve Koruyucu Zırh Üretiminde Kullanılan Lif ve Kompozit Malzemeler. Bartın Orman Fakültesi Dergisi, 18(2), 194-204. https://doi.org/10.24011/barofd.267304


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com