Research Article
BibTex RIS Cite

Physical and Mechanical Properties of Fir and Poplar Subjected to Tall Oil and Vacuum Heat Treatment

Year 2021, , 510 - 519, 16.08.2021
https://doi.org/10.24011/barofd.896564

Abstract

Vacuum heat treatment creates an oxygen-free environment, thus positively effects the properties of wood compared to traditional heat treatment. Crude tall oil is a non-biocidal wood preservative, composed of resin and fatty acids and improves some properties of wood such as water uptake and decay resistance. In this study, tall oil dissolved in ethanol (10% and 20%) for impregnation of the fir and poplar samples according to full cell method, followed by subjected to vacuum-heat treatment at 180 ºC and 200 ºC for 1 and 2 h respectively. Water uptake and mechanical tests such as bending and compression strength of untreated and treated samples were investigated. Results showed that weight percent gain (WPG) was about two times higher for tall oil treatment at 20% than 10% of tall oil. Vacuum heat treatment showed similar trend with control samples in terms of water uptake, while combined treatment of tall oil and vacuum heating lowered the water uptake. The results of mechanical tests indicated that bending strength was not affected by tall oil treatment. Combination of tall oil and vacuum heat treatment improved the compression strength.

References

  • 1. Allegretti, O., Brunetti, M., Cuccui, I., Ferrari, S., Nocetti, M., Terziev, N. (2012). Thermo-vacuum modification of spruce (Picea abies Karst.) and fir (Abies alba Mill.) wood. BioResources, 7(3), 3656-3669.
  • 2. Bak, M., Nemeth, R. (2012). Modification of wood by oil heat treatment. International Scientific Conference on Sustainable Development & Ecological Footprint, March 26-27, Sopron, Hungary
  • 3. Bal, B.C. (2018). A Comparative study of some of the mechanical properties of pine wood heat treated in vacuum, nitrogen, and air atmospheres. BioResources, 13(3), 5504-5511.
  • 4. Bekhta, P., Niemz, P. (2003). Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung, 57(5), 539-546.
  • 5. Can, A., Sivrikaya, H. (2016). Dimensional stabilization of wood treated with tall oil dissolved in different solvents. Maderas. Ciencia y tecnología, 18(2), 317-324.
  • 6. Candelier, K., Dumarçay, S., Pétrissans, A., Gérardin, P., Pétrissans, M. (2013). Comparison of mechanical properties of heat treated beech wood cured under nitrogen or vacuum. Polymer degradation and stability, 98(9), 1762-1765.
  • 7. Cheng, D., Chen, L., Jiang, S., Zhang, Q. (2014). Oil uptake percentage in oil-heat-treated wood, its determination by Soxhlet extraction, and its effects on wood compression strength parallel to the grain. BioResources, 9(1), 120-131.
  • 8. Dubey, M. K., Pang, S., Walker, J. (2011). Effect of oil heating age on colour and dimensional stability of heat treated Pinus radiata. European Journal of Wood and Wood Products, 69(2), 255-262.
  • 9. Esteves, B. (2008). Pine wood modification by heat treatment in air. BioResources, 142-154.
  • 10. Esteves, B., Marques, A. V., Domingos, I., Pereira, H. (2007). Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood science and technology, 41(3), 193.
  • 11. Esteves, B., Pereira, H. (2009). Wood modification by heat treatment: A review. BioResources, 4(1), 370-404. 12. Esteves, B., Nunes, L., Domingos, I., Pereira, H. (2014). Comparison between heat treated sapwood and heartwood from Pinus pinaster. European Journal of Wood and Wood Products, 72(1), 53-60.
  • 13. Hakkou, M., Pétrissans, M., Gérardin, P., Zoulalian, A. (2006). Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer degradation and stability, 91(2), 393-397.
  • 14. Hill C.A.S. (2006). Wood modification-chemical, thermal and other processes. Wiley series in renewable resources. John Wiley & Sons, Ltd, p. 239
  • 15. Hill, C. A., Ramsay, J., Keating, B., Laine, K., Rautkari, L., Hughes, M., Constant, B. (2012). The water vapour sorption properties of thermally modified and densified wood. Journal of Materials Science, 47(7), 3191-3197.
  • 16. Hyvönen, A., Piltonen, P., Niinimäki, J. (2006). Tall oil/water–emulsions as water repellents for Scots pine sapwood. Holz als Roh-und Werkstoff, 64(1), 68-73.
  • 17. Hyvönen, A., Nelo, M., Piltonen, P., Niinimäki, J. (2007). Using the emulsion technique and an iron catalyst to enhance the wood protection properties of tall oil. Holz als Roh-und Werkstoff, 65(3), 247-249.
  • 18. Jamsa, S., Viitaniemi, P. (2001). Heat treatment of wood - Better durability without chemicals. Review on heat treatments of wood, Proceedings of the special seminar of COST Action E22, Antibes, France
  • 19. Kamdem, D. P., Pizzi, A., Jermannaud, A. (2002). Durability of heat-treated wood. Holz als Roh-und Werkstoff, 60(1), 1-6.
  • 20. Kocaefe, D., Poncsak, S., Boluk, Y. (2008). Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioResources, 3(2), 517-537.
  • 21. Korkut, S., Akgül, M., Dündar, T. (2008). The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresource Technology, 99(6), 1861-1868.
  • 22. Koski, A., (2008). Applicability of Crude Tall Oil for Wood Protection, PhD Thesis, Faculty of Technology, Department of Process and Environmental Engineering, University of Oulu, Oulu, Finland, Acta Univ. Oul. C 293.
  • 23. Lahtela, V., Kärki, T. (2016). Effects of impregnation and heat treatment on the physical and mechanical properties of Scots pine (Pinus sylvestris) wood. Wood Material Science & Engineering, 11(4), 217-227.
  • 24. Lee, S. H., Ashaari, Z., Lum, W. C., Halip, J. A., Ang, A. F., Tan, L. P., Chin, K.L., Tahir, P. M. (2018). Thermal treatment of wood using vegetable oils: A review. Construction and Building Materials, 181, 408-419.
  • 25. Lin, B. J., Colin, B., Chen, W. H., Pétrissans, A., Rousset, P., Pétrissans, M. (2018). Thermal degradation and compositional changes of wood treated in a semi-industrial scale reactor in vacuum. Journal of Analytical and Applied Pyrolysis, 130, 8-18.
  • 26. Nogueira, J. M. F. (1996). Refining and separation of crude tall-oil components. Separation science and technology, 31(17), 2307-2316.
  • 27. Rydholm, S.A. (1965). Pulping Processes. John Wiley&Sons, New York.
  • 28. Sandak, A., Sandak, J., Allegretti, O. (2015). Quality control of vacuum thermally modified wood with near infrared spectroscopy. Vacuum, 114, 44-48.
  • 29. Sivrikaya, H., Can, A. (2016). Effect of weathering on wood treated with tall oil combined with some additives. Maderas. Ciencia y tecnología, 18(4), 723-732.
  • 30. Sivrikaya, H., Hosseinpourpia, R., Ahmed, S. A., Adamopoulos, S. (2020). Vacuum-heat treatment of Scots pine (Pinus sylvestris L.) wood pretreated with propanetriol. Wood Material Science & Engineering, 1-9.
  • 31. Srinivas, K., Pandey, K. K. (2012). Effect of heat treatment on color changes, dimensional stability, and mechanical properties of wood. Journal of Wood Chemistry and Technology, 32(4), 304-316.
  • 32. Surini, T., Charrier, F., Malvestio, J., Charrier, B., Moubarik, A., Castéra, P., Grelier, S. (2012). Physical properties and termite durability of maritime pine Pinus pinaster Ait., heat-treated under vacuum pressure. Wood Science and Technology, 46(1-3), 487-501.
  • 33. Tjeerdsma, B. F., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998). Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff, 56(3), 149.
  • 34. Tjeerdsma, B. F., Militz, H. (2005). Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als roh-und Werkstoff, 63(2), 102-111.
  • 35. TS 2474 (1976). Wood determination of ultimate strength in static bending. Turkish standard Institute, Ankara, Turkey.
  • 36. TS 2478 (1976). Wood determination of modulus of elasticity in static bending. Turkish standard Institute, Ankara, Turkey.
  • 37. TS 2595 (1976). Wood determination of ultimate stress in compression parallel to grain. Turkish standard Institute, Ankara, Turkey.
  • 38. Xue-hua, W., Ben-hua, F., Jun-liang, L. (2014). Effect of vacuum heat treatment temperature on physical and mechanical properties of Eucalyptus pellita wood. Wood and Fiber Science, 46(3), 368-375.
  • 39. Van Eckeveld, A. (2001). Natural oils as water repellents for Scots pine. Wageningen University, Thesis AV 2001-15, 30 pages.
  • 40. Zachary, L. G., Bajak, H. W., Eveline, F. J. (1965). Tall oil and its uses. F.W. Dodge Co.

Tall Yağı Emprenyesi ve Vakum Altında Isıl İşlem Yapılmış Göknar ve Kavak Odunlarının Fiziksel ve Mekanik Özellikleri

Year 2021, , 510 - 519, 16.08.2021
https://doi.org/10.24011/barofd.896564

Abstract

Geleneksel ısıl işlemle karşılaştırıldığında, vakumlu ısıl işlem oksijensiz bir ortam yaratır, dolayısıyla odunun özelliklerini olumlu yönde etkiler. Ham tall yağı, reçine ve yağ asitlerinden oluşan ve odunun su alma ve çürüklük direnci gibi bazı özelliklerini iyileştiren, biyosidal olmayan bir odun koruyucudur. Bu çalışmada, göknar ve kavak odunlarının dolu hücre yöntemine göre emprenyesi için tall yağı etanolde (%10 ve %20) çözündürülmüş, ardından sırasıyla 180 ºC ve 200 ºC' de 1 ve 2 saat süreyle vakumlu ısıl işleme tabi tutulmuştur. Kontrol ve muamele edilmiş numunelerin su alma, eğilme ve basınç direnci gibi mekanik testleri incelenmiştir. Sonuçlar, tall yağının %20 oranında kullanıldığı emprenye işlemlerinde yüzde ağırlık artışı tall yağının %10'una kıyasla yaklaşık iki kat daha yüksek olduğunu göstermiştir. Vakumlu ısıl işlem, su alımı açısından kontrol örnekleri ile benzer bir eğilim gösterirken, tall yağı ve vakumlu ısıl işlem kombinasyonu su alımını azaltmıştır. Mekanik test sonuçları, eğilme direncinin tall yağı emprenyesinden olumsuz etkilenmediğini göstermiştir. Tall yağı ve vakumlu ısıl işlem kombinasyonu basınç direncini artırmıştır.

References

  • 1. Allegretti, O., Brunetti, M., Cuccui, I., Ferrari, S., Nocetti, M., Terziev, N. (2012). Thermo-vacuum modification of spruce (Picea abies Karst.) and fir (Abies alba Mill.) wood. BioResources, 7(3), 3656-3669.
  • 2. Bak, M., Nemeth, R. (2012). Modification of wood by oil heat treatment. International Scientific Conference on Sustainable Development & Ecological Footprint, March 26-27, Sopron, Hungary
  • 3. Bal, B.C. (2018). A Comparative study of some of the mechanical properties of pine wood heat treated in vacuum, nitrogen, and air atmospheres. BioResources, 13(3), 5504-5511.
  • 4. Bekhta, P., Niemz, P. (2003). Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung, 57(5), 539-546.
  • 5. Can, A., Sivrikaya, H. (2016). Dimensional stabilization of wood treated with tall oil dissolved in different solvents. Maderas. Ciencia y tecnología, 18(2), 317-324.
  • 6. Candelier, K., Dumarçay, S., Pétrissans, A., Gérardin, P., Pétrissans, M. (2013). Comparison of mechanical properties of heat treated beech wood cured under nitrogen or vacuum. Polymer degradation and stability, 98(9), 1762-1765.
  • 7. Cheng, D., Chen, L., Jiang, S., Zhang, Q. (2014). Oil uptake percentage in oil-heat-treated wood, its determination by Soxhlet extraction, and its effects on wood compression strength parallel to the grain. BioResources, 9(1), 120-131.
  • 8. Dubey, M. K., Pang, S., Walker, J. (2011). Effect of oil heating age on colour and dimensional stability of heat treated Pinus radiata. European Journal of Wood and Wood Products, 69(2), 255-262.
  • 9. Esteves, B. (2008). Pine wood modification by heat treatment in air. BioResources, 142-154.
  • 10. Esteves, B., Marques, A. V., Domingos, I., Pereira, H. (2007). Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood science and technology, 41(3), 193.
  • 11. Esteves, B., Pereira, H. (2009). Wood modification by heat treatment: A review. BioResources, 4(1), 370-404. 12. Esteves, B., Nunes, L., Domingos, I., Pereira, H. (2014). Comparison between heat treated sapwood and heartwood from Pinus pinaster. European Journal of Wood and Wood Products, 72(1), 53-60.
  • 13. Hakkou, M., Pétrissans, M., Gérardin, P., Zoulalian, A. (2006). Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer degradation and stability, 91(2), 393-397.
  • 14. Hill C.A.S. (2006). Wood modification-chemical, thermal and other processes. Wiley series in renewable resources. John Wiley & Sons, Ltd, p. 239
  • 15. Hill, C. A., Ramsay, J., Keating, B., Laine, K., Rautkari, L., Hughes, M., Constant, B. (2012). The water vapour sorption properties of thermally modified and densified wood. Journal of Materials Science, 47(7), 3191-3197.
  • 16. Hyvönen, A., Piltonen, P., Niinimäki, J. (2006). Tall oil/water–emulsions as water repellents for Scots pine sapwood. Holz als Roh-und Werkstoff, 64(1), 68-73.
  • 17. Hyvönen, A., Nelo, M., Piltonen, P., Niinimäki, J. (2007). Using the emulsion technique and an iron catalyst to enhance the wood protection properties of tall oil. Holz als Roh-und Werkstoff, 65(3), 247-249.
  • 18. Jamsa, S., Viitaniemi, P. (2001). Heat treatment of wood - Better durability without chemicals. Review on heat treatments of wood, Proceedings of the special seminar of COST Action E22, Antibes, France
  • 19. Kamdem, D. P., Pizzi, A., Jermannaud, A. (2002). Durability of heat-treated wood. Holz als Roh-und Werkstoff, 60(1), 1-6.
  • 20. Kocaefe, D., Poncsak, S., Boluk, Y. (2008). Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioResources, 3(2), 517-537.
  • 21. Korkut, S., Akgül, M., Dündar, T. (2008). The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresource Technology, 99(6), 1861-1868.
  • 22. Koski, A., (2008). Applicability of Crude Tall Oil for Wood Protection, PhD Thesis, Faculty of Technology, Department of Process and Environmental Engineering, University of Oulu, Oulu, Finland, Acta Univ. Oul. C 293.
  • 23. Lahtela, V., Kärki, T. (2016). Effects of impregnation and heat treatment on the physical and mechanical properties of Scots pine (Pinus sylvestris) wood. Wood Material Science & Engineering, 11(4), 217-227.
  • 24. Lee, S. H., Ashaari, Z., Lum, W. C., Halip, J. A., Ang, A. F., Tan, L. P., Chin, K.L., Tahir, P. M. (2018). Thermal treatment of wood using vegetable oils: A review. Construction and Building Materials, 181, 408-419.
  • 25. Lin, B. J., Colin, B., Chen, W. H., Pétrissans, A., Rousset, P., Pétrissans, M. (2018). Thermal degradation and compositional changes of wood treated in a semi-industrial scale reactor in vacuum. Journal of Analytical and Applied Pyrolysis, 130, 8-18.
  • 26. Nogueira, J. M. F. (1996). Refining and separation of crude tall-oil components. Separation science and technology, 31(17), 2307-2316.
  • 27. Rydholm, S.A. (1965). Pulping Processes. John Wiley&Sons, New York.
  • 28. Sandak, A., Sandak, J., Allegretti, O. (2015). Quality control of vacuum thermally modified wood with near infrared spectroscopy. Vacuum, 114, 44-48.
  • 29. Sivrikaya, H., Can, A. (2016). Effect of weathering on wood treated with tall oil combined with some additives. Maderas. Ciencia y tecnología, 18(4), 723-732.
  • 30. Sivrikaya, H., Hosseinpourpia, R., Ahmed, S. A., Adamopoulos, S. (2020). Vacuum-heat treatment of Scots pine (Pinus sylvestris L.) wood pretreated with propanetriol. Wood Material Science & Engineering, 1-9.
  • 31. Srinivas, K., Pandey, K. K. (2012). Effect of heat treatment on color changes, dimensional stability, and mechanical properties of wood. Journal of Wood Chemistry and Technology, 32(4), 304-316.
  • 32. Surini, T., Charrier, F., Malvestio, J., Charrier, B., Moubarik, A., Castéra, P., Grelier, S. (2012). Physical properties and termite durability of maritime pine Pinus pinaster Ait., heat-treated under vacuum pressure. Wood Science and Technology, 46(1-3), 487-501.
  • 33. Tjeerdsma, B. F., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998). Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff, 56(3), 149.
  • 34. Tjeerdsma, B. F., Militz, H. (2005). Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als roh-und Werkstoff, 63(2), 102-111.
  • 35. TS 2474 (1976). Wood determination of ultimate strength in static bending. Turkish standard Institute, Ankara, Turkey.
  • 36. TS 2478 (1976). Wood determination of modulus of elasticity in static bending. Turkish standard Institute, Ankara, Turkey.
  • 37. TS 2595 (1976). Wood determination of ultimate stress in compression parallel to grain. Turkish standard Institute, Ankara, Turkey.
  • 38. Xue-hua, W., Ben-hua, F., Jun-liang, L. (2014). Effect of vacuum heat treatment temperature on physical and mechanical properties of Eucalyptus pellita wood. Wood and Fiber Science, 46(3), 368-375.
  • 39. Van Eckeveld, A. (2001). Natural oils as water repellents for Scots pine. Wageningen University, Thesis AV 2001-15, 30 pages.
  • 40. Zachary, L. G., Bajak, H. W., Eveline, F. J. (1965). Tall oil and its uses. F.W. Dodge Co.
There are 39 citations in total.

Details

Primary Language English
Subjects Timber, Pulp and Paper
Journal Section Biomaterial Engineering, Bio-based Materials, Wood Science
Authors

Kadriye Gökmen This is me 0000-0001-5227-0684

Hüseyin Sivrikaya 0000-0002-9052-9543

Publication Date August 16, 2021
Published in Issue Year 2021

Cite

APA Gökmen, K., & Sivrikaya, H. (2021). Physical and Mechanical Properties of Fir and Poplar Subjected to Tall Oil and Vacuum Heat Treatment. Bartın Orman Fakültesi Dergisi, 23(2), 510-519. https://doi.org/10.24011/barofd.896564


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com