Türkiye’de Yayılış Gösteren Sumercimeğigil Üyelerinin Belirlenmesi
Year 2018,
Volume: 20 Issue: 1, 145 - 151, 16.04.2018
Ömer Faruk Coşkun
,
Didem Aydın
,
Seyhan Akıska
,
Halil Barış Özel
,
Tuğrul Varol
Abstract
Lemnoideae alt familyasına ait türleri içeren sumercimekleri, çiçekli bitkilerin en
küçük grubunu oluşturmaktadır. Bu çalışmada Türkiye’nin önemli sulak
alanlarının bulunduğu bölgelerde sumercimeği türlerinin yayılış alanları ve
bazı ekolojik özellikleri araştırılmıştır. Sumercimeği genotiplerinin bulunduğu
lokasyonların koordinatları ArcGIS programı kullanılarak haritalandırılmıştır.
Sumercimeğigil üyesi 5 farklı türü temsil eden 67 genotipe ait bitki örneği
belirlenmiştir. Yapılan arazi çalışmalarında L. turionifera’ya ait 3 genotip; Spirodela polyrhiza’ya ait 4 genotip; Lemna trisulca’ya ait 7 genotip; Lemna gibba’ya ait 9 genotip ve Lemna minör’e ait 44 genotip
belirlenmiştir. Sumercimeği olduğu tespit edilen bölgelerin rakımları geniş bir
aralıkta (1-1734 m) bulunmuştur. Model
bitki olarak değerlendirilebilmeleri, biyoremediasyon çalışmalarında kullanılma
potensiyelleri, içerdikleri yüksek protein içeriğinden dolayı balık ve diğer
hayvanlar için besin meateryali olarak kullanılabilmeleri ve içerdikleri yüksek
nişasta içeriğinden dolayı biyoyakıt olarak değerlendirilebilmeleri sumercimeklerinin
önemli avantajlarındandır. Bu anlamda ülkemizde yayılış alanları tür bazında
belirlenen sumercimeği üyesi bitkiler değerlendirilebilir.
References
- Appenroth KJ, Nickel G (2009). Turion formation in Spirodela polyrhiza: the environmental signals that induce the developmental process in nature. Physiol Plant. 138 (3): 312-320.
- Appenroth KJ, Sree KS, Fakhoorian T, Lam E (2015). Resurgence of duckweed research and applications: report from the 3rd International Duckweed Conference. Plant Molecular Biology 89, pp. 647–654.
- Axtell NR, Sternberg SPK, Claussen K (2003). Lead and nickel removal using Microspora and Lemna minor. Bioresource Technology, 89 (1): 41-48.
- Bayhan H, Akça L, Altay A, Şakar S (1996).Yüzen Su Bitkileri ile Atıksulardan Nutrient Giderimi, Tarım-Çevre İlişkileri Sempozyumu, s: 589-598, Mersin, 13-15.
- Bog M, Baumbach H, Schween U, Hellwig F, Landolt E, Appenroth KJ (2010). Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta, 232: 609-619.
- Cheng JJ, Stomp AM (2009). Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean – Soil, Air, Water, 37, 17-26.
- Davis SM, Drake KD, Maier KJ (2002). Toxicity of boron to the duckweed, Spirodella polyrrhiza. Chemosphere, 48: 615-620.
- Elmacı A, Özengin N, Yonar T (2009). Removal of Chromium (III), Copper (II), Lead (II) and Zinc (II) Using Lemna minor L. Fresenius Environmental Bulletin, 18 (5): 538-542.
- Halder S, Venu P (2012). The taxonomy and report of flowering in Lemna L. (Lemnaceae) in India. Current science, 102 (12): 1629-1632.
- Hoeck AV, Horemans N, Monsieurs P, Cao HX, Vandenhove H, Blust R (2015). The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotechnol Biofuels, 8:188.
- Jayaweera MW, Kasturiarachchi JC, Kularatne RK, Wijeyekoon SL (2008). Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. Journal of Environmental Management, 87: 450-460.
- Kara Y (2004). Bioaccumulation of Copper from Contaminated Wastewater by Using Lemna minor. Bull. Environ. Contam. Toxicol., 72, 467-471.
- Kara Y, Kara I (2005). Removal of Cadmium from Water Using Duckweed (Lemna trisulca L.). International Journal of Agriculture and Biology, 1560- 8530, 07-4-660-662.
- Landolt E, Kandeler R (1987). The family of Lemnaceae - a monographic study, Vol. 2: Phytochemistry, physiology, application and bibliography., Vol. 4 in Biosystematic investigations in the family of duckweeds (Lemnaceae). Geobotanischen Instutites der ETH, Stiftung Rubel, Zurich, 638 pp.
- Leblebici Z (2010). Türkiye’de Yayılış Gösteren Lemnaceae (Sumercimeğigiller) Üyelerinde Bazı Ağır Metallerin Alınımı Üzerinde Nitrat, Sülfat ve Fosfatın Etkisi. EÜ Fen Bilimleri Ens. Doktora tezi.
- Lemon GD, Posluszny U, Husband BC (2001). Potential and realized rates of vegetative reproduction in Spirodela polyrhiza, Lemna minor, and Wolffia borealis. Aquat Bot., 70 (1): 79-87.
- Leng RA, Stambolie JH, Bell R (1995). Duckweed—a potential high-protein feed resource for domestic animals and fish FAO Livestock Research for Rural Development. 7 (1).
- Mabberley DJ (2008). Mabberley’s Plant-Book: A portable dictionary of plants, their classification and uses. Third edition, Cambridge University Press. Vii-xviii, 60.
- Miretzky P, Saralegui A, Cirelli AF (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57 (8): 997-1005.
- Öztürk M (2008). Akvaryum Bitkileri Hygrophila difformis ve Microsorium pteropus’un In Vıtro Koşullarda Çoğaltımı. Doktora tezi. Ankara Üniversitesi. Biyoteknoloji Enstitüsü Ankara.
- Rusoff LL, Blakeney EW, Culle DD (1980). Duckweeds (Lemnaceae): a potential source of protein and amino acids. J Agric Food Chem., 28:848–50.
- Sree KS, Appenroth KJ (2016). Duckweed science and food excursion in Thailand. Duckweed Forum 4 (3), 274-275.
- Stout LM, Dodova EN, Tyson JF, Nusslein K (2010). Phytoprotective influence of bacteria on growth and cadmium accumulation in the aquatic plant Lemna minor. Water Res., 44, 4970-4979.
- Tang J, Li Y, Ma J, Cheng JJ (2015). Survey of duckweed diversity in Lake Chao and total fatty acid, triacylglycerol, profiles of representative strains. Plant Biology, 17, 1066–1072.
- Waldron KW (2010). Bioalcohol production: Biochemical conversion of lignocellulosic biomass (Woodhead Publishing Series in Energy). Cambridge: Woodhead Publishing.
- Yan Y, Candreva J, Shi H, Ernst E, Martienssen R, Schwender J, et al. (2013). Survey of the total fatty acid and triacylglycerol composition and content of 30 duckweed species and cloning of a D6-desaturase responsible for the production of γ-linolenic and stearidonic acids in Lemna gibba. BMC Plant Biology 13, 201.
- Yenice Z (2010). Geçici Daldırma Sistem Biyoreaktörlerle Su Mercimeği (Lemna minor L.) Bitkisinin İn Vitro Çoğaltımı. Yüksek Lisans Tezi, Ankara Üniversitesi, Biyoteknoloji Enstitüsü, 47,Ankara.
- Zhao X, Elliston A, Collins SRA, Moates GK, Coleman MJ, Waldron KW (2012). Enzymatic saccharification of duckweed (Lemna minor) biomass without thermophysical pretreatment. Biomass and Bioenergy, 47, 354–361.
- Ziegler P, Adelmann K, Zimmer S, Schmidt C, Appenroth KJ (2015). Relative in vitro growth rates of duckweeds (Lemnaceae)—the most rapidly growing higher plants. Plant Biol 17:33–41.
- Zuberer DA (1982). Nitrogen fixation (acetylene reduction) associated with duckweed (Lemnaceae) mats. Applied and Environmental Microbiology, 43, 823–828.
Determination of the Duckweed Species in Turkey
Year 2018,
Volume: 20 Issue: 1, 145 - 151, 16.04.2018
Ömer Faruk Coşkun
,
Didem Aydın
,
Seyhan Akıska
,
Halil Barış Özel
,
Tuğrul Varol
Abstract
The plants of the Lemnoideae subfamily are the
smallest group of flowering plants. In this study, the distribution areas of Lemnoidea
species in areas where important wetlands of Turkey and some ecological
characteristics were investigated. Coordinates of locations of duckweeds
genotypes are mapped with ArcGIS program. 67 genotype plant samples
representing 5 different species of duckweed members were identified. Three
genotypes belonging to L. turionifera
in the field studies; 4 genotypes belonging to S. polyrhiza; 7 genotypes belonging to Lemna trisulca. It was determined that 9 genotypes belong to L.gibba and 44 genotypes belong to L. minor. The altitudes of the areas
identified as duckweed were in a wide range (1-1734 m). Duckweeds are important
advantages: (1) they can be evaluated as a model plant, potentialities of use
in bioremediation studies, (2) they can be used as food for fish and other
animals due to the high protein content they contain and (3) they can be evaluated
as biofuels because they have high starch content. The duckweed member plants
whose distribution areas are determined in Turkey can be evaluated for these
purposes.
References
- Appenroth KJ, Nickel G (2009). Turion formation in Spirodela polyrhiza: the environmental signals that induce the developmental process in nature. Physiol Plant. 138 (3): 312-320.
- Appenroth KJ, Sree KS, Fakhoorian T, Lam E (2015). Resurgence of duckweed research and applications: report from the 3rd International Duckweed Conference. Plant Molecular Biology 89, pp. 647–654.
- Axtell NR, Sternberg SPK, Claussen K (2003). Lead and nickel removal using Microspora and Lemna minor. Bioresource Technology, 89 (1): 41-48.
- Bayhan H, Akça L, Altay A, Şakar S (1996).Yüzen Su Bitkileri ile Atıksulardan Nutrient Giderimi, Tarım-Çevre İlişkileri Sempozyumu, s: 589-598, Mersin, 13-15.
- Bog M, Baumbach H, Schween U, Hellwig F, Landolt E, Appenroth KJ (2010). Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta, 232: 609-619.
- Cheng JJ, Stomp AM (2009). Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean – Soil, Air, Water, 37, 17-26.
- Davis SM, Drake KD, Maier KJ (2002). Toxicity of boron to the duckweed, Spirodella polyrrhiza. Chemosphere, 48: 615-620.
- Elmacı A, Özengin N, Yonar T (2009). Removal of Chromium (III), Copper (II), Lead (II) and Zinc (II) Using Lemna minor L. Fresenius Environmental Bulletin, 18 (5): 538-542.
- Halder S, Venu P (2012). The taxonomy and report of flowering in Lemna L. (Lemnaceae) in India. Current science, 102 (12): 1629-1632.
- Hoeck AV, Horemans N, Monsieurs P, Cao HX, Vandenhove H, Blust R (2015). The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotechnol Biofuels, 8:188.
- Jayaweera MW, Kasturiarachchi JC, Kularatne RK, Wijeyekoon SL (2008). Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. Journal of Environmental Management, 87: 450-460.
- Kara Y (2004). Bioaccumulation of Copper from Contaminated Wastewater by Using Lemna minor. Bull. Environ. Contam. Toxicol., 72, 467-471.
- Kara Y, Kara I (2005). Removal of Cadmium from Water Using Duckweed (Lemna trisulca L.). International Journal of Agriculture and Biology, 1560- 8530, 07-4-660-662.
- Landolt E, Kandeler R (1987). The family of Lemnaceae - a monographic study, Vol. 2: Phytochemistry, physiology, application and bibliography., Vol. 4 in Biosystematic investigations in the family of duckweeds (Lemnaceae). Geobotanischen Instutites der ETH, Stiftung Rubel, Zurich, 638 pp.
- Leblebici Z (2010). Türkiye’de Yayılış Gösteren Lemnaceae (Sumercimeğigiller) Üyelerinde Bazı Ağır Metallerin Alınımı Üzerinde Nitrat, Sülfat ve Fosfatın Etkisi. EÜ Fen Bilimleri Ens. Doktora tezi.
- Lemon GD, Posluszny U, Husband BC (2001). Potential and realized rates of vegetative reproduction in Spirodela polyrhiza, Lemna minor, and Wolffia borealis. Aquat Bot., 70 (1): 79-87.
- Leng RA, Stambolie JH, Bell R (1995). Duckweed—a potential high-protein feed resource for domestic animals and fish FAO Livestock Research for Rural Development. 7 (1).
- Mabberley DJ (2008). Mabberley’s Plant-Book: A portable dictionary of plants, their classification and uses. Third edition, Cambridge University Press. Vii-xviii, 60.
- Miretzky P, Saralegui A, Cirelli AF (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57 (8): 997-1005.
- Öztürk M (2008). Akvaryum Bitkileri Hygrophila difformis ve Microsorium pteropus’un In Vıtro Koşullarda Çoğaltımı. Doktora tezi. Ankara Üniversitesi. Biyoteknoloji Enstitüsü Ankara.
- Rusoff LL, Blakeney EW, Culle DD (1980). Duckweeds (Lemnaceae): a potential source of protein and amino acids. J Agric Food Chem., 28:848–50.
- Sree KS, Appenroth KJ (2016). Duckweed science and food excursion in Thailand. Duckweed Forum 4 (3), 274-275.
- Stout LM, Dodova EN, Tyson JF, Nusslein K (2010). Phytoprotective influence of bacteria on growth and cadmium accumulation in the aquatic plant Lemna minor. Water Res., 44, 4970-4979.
- Tang J, Li Y, Ma J, Cheng JJ (2015). Survey of duckweed diversity in Lake Chao and total fatty acid, triacylglycerol, profiles of representative strains. Plant Biology, 17, 1066–1072.
- Waldron KW (2010). Bioalcohol production: Biochemical conversion of lignocellulosic biomass (Woodhead Publishing Series in Energy). Cambridge: Woodhead Publishing.
- Yan Y, Candreva J, Shi H, Ernst E, Martienssen R, Schwender J, et al. (2013). Survey of the total fatty acid and triacylglycerol composition and content of 30 duckweed species and cloning of a D6-desaturase responsible for the production of γ-linolenic and stearidonic acids in Lemna gibba. BMC Plant Biology 13, 201.
- Yenice Z (2010). Geçici Daldırma Sistem Biyoreaktörlerle Su Mercimeği (Lemna minor L.) Bitkisinin İn Vitro Çoğaltımı. Yüksek Lisans Tezi, Ankara Üniversitesi, Biyoteknoloji Enstitüsü, 47,Ankara.
- Zhao X, Elliston A, Collins SRA, Moates GK, Coleman MJ, Waldron KW (2012). Enzymatic saccharification of duckweed (Lemna minor) biomass without thermophysical pretreatment. Biomass and Bioenergy, 47, 354–361.
- Ziegler P, Adelmann K, Zimmer S, Schmidt C, Appenroth KJ (2015). Relative in vitro growth rates of duckweeds (Lemnaceae)—the most rapidly growing higher plants. Plant Biol 17:33–41.
- Zuberer DA (1982). Nitrogen fixation (acetylene reduction) associated with duckweed (Lemnaceae) mats. Applied and Environmental Microbiology, 43, 823–828.