Research Article
BibTex RIS Cite

Farklı Biyokütlelerden Elde Edilen Nişasta İle Akıllı Biyoplastik Malzeme ve Odun Biyoplastik Kompozit Üretimi

Year 2019, Volume: 21 Issue: 2, 377 - 385, 15.08.2019

Abstract



Bu çalışmanın amacı, petrol türevi ambalajların insan
sağlığına ve çevreye verdiği zararı en aza indirebilmek  için farklı biyokütlelerden elde edilen
nişasta esaslı çevre dostu alternatif akıllı biyoplastik ve odun biyokompozit
ambalaj malzemelerinin üretilmesidir. Bu amaçla, üretilen numunelerin sudaki
çözünme (%), su alma (%), ASTM D 792 standartlarına göre yoğunluk (g/cm3)  ve ISO 4287 standardına göre yüzey
pürüzlülüğü değerleri belirlenmiştir. Elde edilen sonuçlara göre; en yüksek ve
en düşük suda çözünme değerleri sırasıyla % 100 ile D numunesi ve % 8,01 ile F
numuneleridir. Suda alma (%) değerleri, en yüksek % 242 ile B numunesi en düşük
ise % 108 değeri ile E numunesi ölçülmüştür. En düzgün yüzeye Ra, Rz
ve Rmax değerleri ile sırasıyla, 3.53, 18.8 ve 25.1 µm olarak A
numunesi ölçülür iken, yüzey pürüzlülüğünün en fazla olduğu numune ise 10.4,
43.8 ve 55.0 µm değerleri ile D numunesinin olduğu belirlenmiştir.




References

  • Ali A, Yu L, Liu H, Khalid S, Meng L, Chen L (2017). Preparation and Characterization of Starch-Based Composite Films Reinforced by Corn and Wheat Hulls. Journal of Applied Polymer Science, 134
  • Asaf KS (2008). Synthesis and Properties of Starch Based Biomaterials. University of Groningen, Groningen.
  • ASTM D 792 (2004). Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA.
  • Averous L, Fringant C, Moro L (2001). Starch-Based Biodegradable Materials Suitable for Thermodynamics Packaging. Starch/Starke, 53, 368-371.
  • Avella M, Vlieger JJD, Errico ME, Fischer S, Vacca P, Vope MG (2009). Biodegradable Starch/Clay Nanocomposite Films for Food Packaging Applications. Food Chemistry, 93, 548-558.
  • Biliaderis CG (1998). Structures and Phase Transitions of Starch Polymers, in Polysaccharide Association Structures in Food. Marcel Dekker, Walter RH, New York, pp. 57-168.
  • Gontard N, Guilbert S, Cuq JL (1992). Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. Journal of Food Science and Technology. (57): pp. 190–195.
  • Prabhu NT, Prashantha K (2016). A Review on Present Status and Future Challenges of Starch Based Polymer Films and Their Composites in Food Packaging Applications, Polymer Composites. 39 (7): 2499-2522.
  • Sharma C, Manepalli PH, Thatte A, Thomas S, Kalarikkal N, Alavi S (2017). Biodegradable Starch/PVOH/Laponite RD-Based Bionanocomposite Films Coated with Graphene Oxide: Preparation and Performance Characterization for Food Packaging Applications. Colloid and Polymer Science, 295, 1695-1708.
  • Stevens ES (2002). Green Plastics: An Introduction to the New Science of Biodegradable Plastics. Princeton University Press, Princeton.
  • Imre B, Pukanszky B (2013). Compatibilization in Bio-Based and Biodegradable Polymer Blends. European Polymer Journal, 49, 1215-1233.
  • ISO 4287 (1984). Help file of Ultra Software .Taylor and Hobson.
  • Ölçer H, Akın B (2008). Starch: Biosynthesis, Granule Structure and Genetic Modifications. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, (016), 1-12.
  • Özdemir F, Ramazanoğlu D (2018). Nişasta Esaslı Dilatant Sıvıların Akıllı Darbe Absorban Malzemesi Olarak Kullanılabilirliğinin Araştırılması 3. Uluslararası Akdeniz Bilim ve Mühendislik Kongresi 24-26 Ekim 2018 Çukurova Üniversitesi, Kongre Merkezi, Adana/Türkiye 1054.
  • Tharanathan RN (2003). Biodegradable Films and Composite Coatings: Past, Present, and Future. Trends in Food Science and Technology, 14, 71-78.
  • Pan DD, Jane JL (2000). Internal structure of normal maize starch granules revealed by chemical surface gelatinization. Biomacro-molecules, 1, 126–132.
  • Whistler RL, BeMiller JN (1996). Starch. In: R. L. Whistler & J. N. BeMiller (Eds), Carbohydrate chemistry for food scientists (pp. 117–151). St. Paul, MN: Eagan Press.
  • Yamin FF, Lee M, Pollak LM, White PJ (1999). Thermal properties of starch in corn variants isolated after chemical mutagenesis of inbred line B73. Cereal Chemistry, 76, 175– 181.

Production of Bioplastic Composite and Wood Bioplastic Composite with Starch from Different Biomasses

Year 2019, Volume: 21 Issue: 2, 377 - 385, 15.08.2019

Abstract



The aim of this study is to produce eco-friendly alternative
bioplastic and wood biocomposite packaging materials based on starch, derived
from different biomasses, in order to minimize the damage caused by petroleum
derivative packages to human health and the environment. For this purpose, solubility
in water (%), water absorption (%), density according to ASTM D 792 (g/cm3)
and surface roughness values according to ISO 4287 standard were determined. According
to the results obtained; the highest and lowest water solubility values are
sample D  with 100 % and sample F with
8.01 %, respectively. The highest and lowest water absorption (%) capacity with
value of % 242 as sample B and as 108 % with the sample E were measured
respectively. The most uniform surface was obtained by the values Ra, Rz and
Rmax, as 3.53, 18.8 and 25.1 µm for sample A while the highest surface
roughness with respectively as 10.4, 43.8 and 55.0 µm values for sample D was
determined.




References

  • Ali A, Yu L, Liu H, Khalid S, Meng L, Chen L (2017). Preparation and Characterization of Starch-Based Composite Films Reinforced by Corn and Wheat Hulls. Journal of Applied Polymer Science, 134
  • Asaf KS (2008). Synthesis and Properties of Starch Based Biomaterials. University of Groningen, Groningen.
  • ASTM D 792 (2004). Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA.
  • Averous L, Fringant C, Moro L (2001). Starch-Based Biodegradable Materials Suitable for Thermodynamics Packaging. Starch/Starke, 53, 368-371.
  • Avella M, Vlieger JJD, Errico ME, Fischer S, Vacca P, Vope MG (2009). Biodegradable Starch/Clay Nanocomposite Films for Food Packaging Applications. Food Chemistry, 93, 548-558.
  • Biliaderis CG (1998). Structures and Phase Transitions of Starch Polymers, in Polysaccharide Association Structures in Food. Marcel Dekker, Walter RH, New York, pp. 57-168.
  • Gontard N, Guilbert S, Cuq JL (1992). Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. Journal of Food Science and Technology. (57): pp. 190–195.
  • Prabhu NT, Prashantha K (2016). A Review on Present Status and Future Challenges of Starch Based Polymer Films and Their Composites in Food Packaging Applications, Polymer Composites. 39 (7): 2499-2522.
  • Sharma C, Manepalli PH, Thatte A, Thomas S, Kalarikkal N, Alavi S (2017). Biodegradable Starch/PVOH/Laponite RD-Based Bionanocomposite Films Coated with Graphene Oxide: Preparation and Performance Characterization for Food Packaging Applications. Colloid and Polymer Science, 295, 1695-1708.
  • Stevens ES (2002). Green Plastics: An Introduction to the New Science of Biodegradable Plastics. Princeton University Press, Princeton.
  • Imre B, Pukanszky B (2013). Compatibilization in Bio-Based and Biodegradable Polymer Blends. European Polymer Journal, 49, 1215-1233.
  • ISO 4287 (1984). Help file of Ultra Software .Taylor and Hobson.
  • Ölçer H, Akın B (2008). Starch: Biosynthesis, Granule Structure and Genetic Modifications. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, (016), 1-12.
  • Özdemir F, Ramazanoğlu D (2018). Nişasta Esaslı Dilatant Sıvıların Akıllı Darbe Absorban Malzemesi Olarak Kullanılabilirliğinin Araştırılması 3. Uluslararası Akdeniz Bilim ve Mühendislik Kongresi 24-26 Ekim 2018 Çukurova Üniversitesi, Kongre Merkezi, Adana/Türkiye 1054.
  • Tharanathan RN (2003). Biodegradable Films and Composite Coatings: Past, Present, and Future. Trends in Food Science and Technology, 14, 71-78.
  • Pan DD, Jane JL (2000). Internal structure of normal maize starch granules revealed by chemical surface gelatinization. Biomacro-molecules, 1, 126–132.
  • Whistler RL, BeMiller JN (1996). Starch. In: R. L. Whistler & J. N. BeMiller (Eds), Carbohydrate chemistry for food scientists (pp. 117–151). St. Paul, MN: Eagan Press.
  • Yamin FF, Lee M, Pollak LM, White PJ (1999). Thermal properties of starch in corn variants isolated after chemical mutagenesis of inbred line B73. Cereal Chemistry, 76, 175– 181.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Biomaterial
Journal Section Biomaterial Engineering, Bio-based Materials, Wood Science
Authors

Ferhat Özdemir 0000-0002-2282-1884

Doğu Ramazanoğlu 0000-0002-6356-5792

Publication Date August 15, 2019
Published in Issue Year 2019 Volume: 21 Issue: 2

Cite

APA Özdemir, F., & Ramazanoğlu, D. (2019). Farklı Biyokütlelerden Elde Edilen Nişasta İle Akıllı Biyoplastik Malzeme ve Odun Biyoplastik Kompozit Üretimi. Bartın Orman Fakültesi Dergisi, 21(2), 377-385.


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com