X-ışını Kırınımı (XRD) ve Taramalı Elektron Mikroskobu (SEM) Kullanılarak Kaynaklanan Göknar, Meşe ve Kestane Odununun Yapısal Karakterizasyonu
Year 2021,
Volume: 23 Issue: 3, 871 - 877, 15.12.2021
Mustafa Zor
,
Hızır Volkan Görgün
,
Mojgan Vaziri
Abstract
Bu çalışma, kaynaklanmış Göknar, Meşe ve Kestane odunlarının morfolojik analizlerini tanımlamak için taramalı elektron mikroskopu ve selüloz kristanilitesini tahmin etmek için X-ışını kırınım analizi kullanılarak örnekler karakterize edilmiştir. Sonuçlar, XRD analizinde selüloz kristalinite indeksinin (CRI) göknar, meşe ve kestane ağacı örneklerinde sırasıyla% 57.55 ve % 47.73 ve% 56.66 olarak belirlendiğini göstermiştir. Tüm ahşap örneklerinin CRI değeri, kaynağa tabi tutulduktan sonra artmıştır. SEM analizine göre ahşabın genel hücre yapısı, kendini korurken kaynaklı ara fazı oluşturmak için kullanılan yüksek sıcaklık ve basınçla kırılma meydana gelmiştir. Sonuç olarak, yumuşak ağacın kristal değerinin, sert ağaçlardaki yüksek polisakkarit yüzdesine kıyasla daha yüksek olduğu bulunmuştur.
Supporting Institution
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK-2219/BIDEB, 2019
Thanks
Yazarlar, ahşap malzemelerin temininde destek sağladığı için Nova Orman Ürünlerine teşekkür etmektedir. Ayrıca yazarlar, konuk araştırmacı Dr. Mustafa ZOR'a, bu doktora sonrası çalışmayı İsveç, Skellefteå'daki Luleå Teknoloji Üniversitesi'nde yapması için burs desteği aldığı Türkiye Bilimsel ve Teknolojik Araştırma Kurumu'na (TÜBİTAK- 2219/BIDEB, 2019) teşekkür eder.
References
- Betts R.A., Cox, P.M., Lee, S.E., Woodward, F.L. (1997). Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387: 796-799.
- Broda M., Carmen-Mihaela P., (2019). Natural decay of archaeological oak wood versus artificial degradation processes—An FT-IR spectroscopy and X-ray diffraction study. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy 209;280-287.
- Ganne-Chedeville, C., Properzi, M., Pizzi, A., Leban, J-M. and Pichelin, F. (2006). Parameters of wood welding: a study with infrared thermography, Vol. 60, 2006, pp. 434-438.
- Jones, D. and Pizzi, A. (2009). Frictional Welding of Dowels into Modified Wood. Cost Action E34 Workshop in Slovenia on Bonding of Modified Wood.
- Delmotte, L., Mansouri, H.R., Omeani, P., Pizzi, A. (2009).“Influence of wood welding frequency on wood constituents chemical modifications. J Adhes Sci Technol 23:1271–1279.
- Ganne-Chedeville, C., Pizzi, A., Thomas, A., Leban, J.M., Bocquet, J.F., Despres, A., Mansouri, H. (2005). Parameter interactions in twoblock welding and the wood nail concept in wood dowel welding. J Adhes Sci Technol 19:1157–1174.
- Gfeller, B., Zanetti, M., Properzi, M., Pizzi, A., Pichelin F., Lehmann, M., and Delmotte L. (2003). Wood bonding by vibration welding. J. Adhes. Sci. Technol. 17, 1425–1590. DOI: 10.1163/156856103769207419.
- Karl-Christian, M., Stergios, A., Gerald, K., Holger, M. (2013). Topochemistry of heat-treated and N-methylol melamine-modified wood of koto (Pterygota macrocarpa K. Schum.) and limba (Terminalia superba Engl. et Diels). Holzforschung 67:137–146.
- Delmotte, L., Ganne-Chedeville, C., Leban, J-M., Pizzi, A. and Pichelin, F. (2008). CPMAS 13 C NMR and FT-IR investigation of the degradation reactions of polymer constituents in wood welding, Polymer Degrad. & Stabil. 93, 406-412
- Leban, J.-M., Pizzi, A., Wieland, S., Zanetti, M., Properzi, M. and Pichelin, F. (2004). X-ray microdensitometry analysis of vibration-welded wood. Journal of Adhesion Science and Technology, 18, 673685.
- Properzi, M., Leban, J-M., Pizzi, A., Wieland, S., Pichelin, F. and Lehmann, M. (2005). Influence of grain direction in vibrational wood welding, Holzforschung. 59, 23–27
- Malherbe, S., Cloete, T.E. (2002). Lignocellulose biodegradation: fundamentals and applications. Reviews in Environmental Science and Biotechnology 1: 105-114.
- Martins, S.A., Ganier, T., Pizzi, A., and Del Menezzi, C. H. S. (2013). Parameter scanning for linear welding of Brezilian Eucalyptus benthamii wood. Eur. J. Wood. Prod., 71, 525-527. DOI:10.1007/s00107-013-0696-1.
- Mathews, S.L., Pawlak, J., Grunden, A.M. (2015). Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Applied Microbiology and Biotechnology 99: 2939-2954.
- Navi, P., and Sandberg, D. (2012). Thermo-Hydro-Mechanical Processing of Wood. EPFL Press, Lausanne, Switzerland, pp. 47-50.
- Pizzi, A., Leban, J.-M., Kanazawa, F., Properzi, M. and Pichelin, F. (2004). Wood dowel bonding by high-speed rotation welding. Journal of Adhesion Science and Technology, 18, 1263-1278.
- Sandberg, D., Haller, P., Navi, P. (2013). Thermo-hydro and thermos-hydro-mechanical wood processing: an opportunity for future environmentally friendly wood products. Wood Mater Sci Eng 8 (1):64–88.
- Segal, L., Creely, J.J, Martin, Jr, A.E, Conrad, C.M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal 29: 786-794.
- Segovia, C., Pizzi, A. (2009). Performance of dowel-welded wood furniture linear joints. J Adhes Sci Technol 23:1293–1301
- Stamm, B. (2005). Development of friction welding of wood physical, mechanical and chemical studies. PhD thesis No. 3396, Ecole Fe´de´rale de Lausanne, Switzerland.
- Sun, Y., Royer, M., Diouf, P.N., Stevanovic, T. (2010). Chemical changes induced by high-speed rotation welding of wood-application to two Canadian hardwood species. J Adhes Sci Technol 24:1383–1400.
- Vaziri, M., Lindgren O., and Pizzi, A. (2009). Influence of welding parameters and wood properties on water absorption in Scots pine joints induced by linear friction welding. J. Adhes. Sci. Technol. 25(15), 1819-1828. DOI: 10.1163/016942410X525731
- Vaziri, M., Lindgren, O., Pizzi, A., and Mansouri, H. R. (2010). Moisture sensitivity of Scots pine joints produced by linear frictional welding. J. Adhes. Sci. Technol. 24(8), 1515-1527. DOI: 10.1163/016942410X501098.
- Vaziri, M., Karlsson, O., Abrahamsson L., Lin C-F, and Sandberg, D. (2020). Wettability of welded wood-joints investigated by the Wilhelmy method. Part 1: Determination of Apparent Contact Angles, Swelling and Water Sorption. Holzforschung. Doi.org/10.1515/hf-2019-0308.
- Zhang, H., Pizzi, A. and Xiaoning, L. (2014).Palmyra palm bonding by vibrational welding. Eur. J. Wood Prod., 72, 693-695. DOI: 10.1007/s00107-014-0825-5.
- Zhang, H., Pizzi, An., Lu, X. And Zhou, X., (2014). Optimization of Tensile Shear Strength of Linear Machanically Welded Outer-to-Inner Flattened Moso Bamboo (Phyllostachys pubescens). BioResources,9(2):2500-2508.
- Zhou, X.J, Pizzi, A., Du, G.B. (2014). Research progress of wood welding technology (bonding without adhesive). China Adhesives 23: 47–53.
- Zhu, X., Y,, S., Gao, Y., Zhao, Y., Qiu, Y. (2017). Mechanical evaluation and XRD/TG investigation on the properties of wooden dowel welding. BioRes, 12(2):3396-3412.
- Zor, M., Görgün, V. H., Mojgan V. (2019). Water Resistance of Welded Oak, Fir and Chestnut. III. International Mediterranean Forest and Environment Symposium, Kahramanmaraş, TURKEY.
- Zor, M. (2020). Water resistance of heat-treated welded Iroko, Ash, Tulip and Ayous wood. BioRes, 15(4):9584-9595.
Structural Characterization of Welded Fir, Oak, and Chestnut using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) Analysis
Year 2021,
Volume: 23 Issue: 3, 871 - 877, 15.12.2021
Mustafa Zor
,
Hızır Volkan Görgün
,
Mojgan Vaziri
Abstract
This work characterizes welded wood specimens by estimating the crystallinity of cellulose by x-ray diffraction (XRD) and scanning electron microscopy (SEM) to identify the morphology of the welded fir, oak, and chestnut woods. The results showed that the cellulose crystallinity index (CRI) in the XRD analysis were identified to be 57.55% , 47.73%, and 56.66% for the fir, oak, and chestnut wood specimens, respectively. The CRI of all wood samples increased after they were subjected to welding. According to the SEM analysis, the general cell structure of the wood collapsed with the high temperature and pressure used to form the welded intermediate phase while protecting itself. As a result, the cellulose crystalline value of the softwood was found to be higher compared to the high percentage of polysaccharides in the hardwoods.
References
- Betts R.A., Cox, P.M., Lee, S.E., Woodward, F.L. (1997). Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387: 796-799.
- Broda M., Carmen-Mihaela P., (2019). Natural decay of archaeological oak wood versus artificial degradation processes—An FT-IR spectroscopy and X-ray diffraction study. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy 209;280-287.
- Ganne-Chedeville, C., Properzi, M., Pizzi, A., Leban, J-M. and Pichelin, F. (2006). Parameters of wood welding: a study with infrared thermography, Vol. 60, 2006, pp. 434-438.
- Jones, D. and Pizzi, A. (2009). Frictional Welding of Dowels into Modified Wood. Cost Action E34 Workshop in Slovenia on Bonding of Modified Wood.
- Delmotte, L., Mansouri, H.R., Omeani, P., Pizzi, A. (2009).“Influence of wood welding frequency on wood constituents chemical modifications. J Adhes Sci Technol 23:1271–1279.
- Ganne-Chedeville, C., Pizzi, A., Thomas, A., Leban, J.M., Bocquet, J.F., Despres, A., Mansouri, H. (2005). Parameter interactions in twoblock welding and the wood nail concept in wood dowel welding. J Adhes Sci Technol 19:1157–1174.
- Gfeller, B., Zanetti, M., Properzi, M., Pizzi, A., Pichelin F., Lehmann, M., and Delmotte L. (2003). Wood bonding by vibration welding. J. Adhes. Sci. Technol. 17, 1425–1590. DOI: 10.1163/156856103769207419.
- Karl-Christian, M., Stergios, A., Gerald, K., Holger, M. (2013). Topochemistry of heat-treated and N-methylol melamine-modified wood of koto (Pterygota macrocarpa K. Schum.) and limba (Terminalia superba Engl. et Diels). Holzforschung 67:137–146.
- Delmotte, L., Ganne-Chedeville, C., Leban, J-M., Pizzi, A. and Pichelin, F. (2008). CPMAS 13 C NMR and FT-IR investigation of the degradation reactions of polymer constituents in wood welding, Polymer Degrad. & Stabil. 93, 406-412
- Leban, J.-M., Pizzi, A., Wieland, S., Zanetti, M., Properzi, M. and Pichelin, F. (2004). X-ray microdensitometry analysis of vibration-welded wood. Journal of Adhesion Science and Technology, 18, 673685.
- Properzi, M., Leban, J-M., Pizzi, A., Wieland, S., Pichelin, F. and Lehmann, M. (2005). Influence of grain direction in vibrational wood welding, Holzforschung. 59, 23–27
- Malherbe, S., Cloete, T.E. (2002). Lignocellulose biodegradation: fundamentals and applications. Reviews in Environmental Science and Biotechnology 1: 105-114.
- Martins, S.A., Ganier, T., Pizzi, A., and Del Menezzi, C. H. S. (2013). Parameter scanning for linear welding of Brezilian Eucalyptus benthamii wood. Eur. J. Wood. Prod., 71, 525-527. DOI:10.1007/s00107-013-0696-1.
- Mathews, S.L., Pawlak, J., Grunden, A.M. (2015). Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Applied Microbiology and Biotechnology 99: 2939-2954.
- Navi, P., and Sandberg, D. (2012). Thermo-Hydro-Mechanical Processing of Wood. EPFL Press, Lausanne, Switzerland, pp. 47-50.
- Pizzi, A., Leban, J.-M., Kanazawa, F., Properzi, M. and Pichelin, F. (2004). Wood dowel bonding by high-speed rotation welding. Journal of Adhesion Science and Technology, 18, 1263-1278.
- Sandberg, D., Haller, P., Navi, P. (2013). Thermo-hydro and thermos-hydro-mechanical wood processing: an opportunity for future environmentally friendly wood products. Wood Mater Sci Eng 8 (1):64–88.
- Segal, L., Creely, J.J, Martin, Jr, A.E, Conrad, C.M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal 29: 786-794.
- Segovia, C., Pizzi, A. (2009). Performance of dowel-welded wood furniture linear joints. J Adhes Sci Technol 23:1293–1301
- Stamm, B. (2005). Development of friction welding of wood physical, mechanical and chemical studies. PhD thesis No. 3396, Ecole Fe´de´rale de Lausanne, Switzerland.
- Sun, Y., Royer, M., Diouf, P.N., Stevanovic, T. (2010). Chemical changes induced by high-speed rotation welding of wood-application to two Canadian hardwood species. J Adhes Sci Technol 24:1383–1400.
- Vaziri, M., Lindgren O., and Pizzi, A. (2009). Influence of welding parameters and wood properties on water absorption in Scots pine joints induced by linear friction welding. J. Adhes. Sci. Technol. 25(15), 1819-1828. DOI: 10.1163/016942410X525731
- Vaziri, M., Lindgren, O., Pizzi, A., and Mansouri, H. R. (2010). Moisture sensitivity of Scots pine joints produced by linear frictional welding. J. Adhes. Sci. Technol. 24(8), 1515-1527. DOI: 10.1163/016942410X501098.
- Vaziri, M., Karlsson, O., Abrahamsson L., Lin C-F, and Sandberg, D. (2020). Wettability of welded wood-joints investigated by the Wilhelmy method. Part 1: Determination of Apparent Contact Angles, Swelling and Water Sorption. Holzforschung. Doi.org/10.1515/hf-2019-0308.
- Zhang, H., Pizzi, A. and Xiaoning, L. (2014).Palmyra palm bonding by vibrational welding. Eur. J. Wood Prod., 72, 693-695. DOI: 10.1007/s00107-014-0825-5.
- Zhang, H., Pizzi, An., Lu, X. And Zhou, X., (2014). Optimization of Tensile Shear Strength of Linear Machanically Welded Outer-to-Inner Flattened Moso Bamboo (Phyllostachys pubescens). BioResources,9(2):2500-2508.
- Zhou, X.J, Pizzi, A., Du, G.B. (2014). Research progress of wood welding technology (bonding without adhesive). China Adhesives 23: 47–53.
- Zhu, X., Y,, S., Gao, Y., Zhao, Y., Qiu, Y. (2017). Mechanical evaluation and XRD/TG investigation on the properties of wooden dowel welding. BioRes, 12(2):3396-3412.
- Zor, M., Görgün, V. H., Mojgan V. (2019). Water Resistance of Welded Oak, Fir and Chestnut. III. International Mediterranean Forest and Environment Symposium, Kahramanmaraş, TURKEY.
- Zor, M. (2020). Water resistance of heat-treated welded Iroko, Ash, Tulip and Ayous wood. BioRes, 15(4):9584-9595.