Research Article
BibTex RIS Cite

Dolomit ve Olivin ile Kızılçam odun yonga karışımından üretilen deneme levhalarının özellikleri. Bölüm 2.Teknolojik özellikler

Year 2023, Volume: 25 Issue: 3, 388 - 397, 15.12.2023
https://doi.org/10.24011/barofd.1240477

Abstract

Üre-formaldehit tutkalı ile kızılçam odun yongaları kullanılarak hazırlanmış formülasyona, iki mineral madde (dolomit ve olivin) eklenerek deneme levhaları üretilmiş ve önceden belirlenmiş fizikokimyasal özellikleri ile ilave edilen mineral maddelerin levha özellklerine olan etkileri incelenmiştir. İki mineral maddenin de dış atmosferik şartlara karşı (weathering), levhaların yüzey renk bozulmasına karşı olumlu etki sağladığı anlaşılmıştır. En yüksel parlaklık azalması (∆L: -13.13) (daha koyu yüzey) kontrol örneğinde elde edilmiştir. Örnek PY1 daha yeşil yüzey renk özelliği gösterirken (∆a: -0,39) diğer levhalar ise kontrol örneklerine göre (PX0/PY0: 3.55) daha düşük kırmızı renk özellikleri (∆a: 1.06 ile 3.40 arası dolomit ilave edilmiş levhalarda, ∆a: 0.80 ile 1.49 arasında olivin ilave edilmiş levhalarda) gözlemlenmiştir. Dolomit ilave edilmiş levhalarda, toplam renk değişimine (∆E) karşı en yüksek pozitif etki PX1 deneme levhasında gözlemlenmiş ve bu levhada, kontrol örneğinden yaklaşık %63 daha düşük bulunmuştur (∆E PX0: 13.62, ∆E PX1: 5.03). Olivin ile formüle edilmiş deneme levhalarında ise en yüksek etki PY2 örneğinde, kontrolden yaklaşık 87% daha düşük ölçülmüştür (∆E PY0: 13.62, ∆E PY2: 1.73). Olivin, deneme levhaların dış atmosferik şartlarda renk bozunmasına karşı benzer deneysel ortamda, dolomite göre daha etkili olduğu gözlemlenmiştir. Herne kadar deneme levhaları daha düşük ısı iletim özelliği dolayısıyla yalıtım özelliğine pozitif etki ettiği gözlemlenmiş olmakla birlikte, tüm olivin ve dolomit ilave edilmiş deneme levhaların ısı iletim katsayıları, standart değer olan λ: 0.065 W/mK den daha yüksek bulunmuştur. Mineral ilave edilmiş levhalar yanma testinde, kütle kaybını (%) azaltıcı etki sağladığı; dolomit ilave edilmiş dneme levhaları için 11.98% (PX1) ile 17.39% (PX0) arasında, olivin ilave edilmiş deneme levhalarında ise 10.85% (PY5) ile 17.35% (PY0) arasında hesaplanmıştır. Her iki mineral maddenin (dolomit ve olivin) ilave edilmesiyle üretilen deneme levhalarının yanma denemelerinde özelliklerinin iyileştiği, fakat benzer deneme şartlarında, olivin-esaslı deneme levhalarının kütle kaybının, dolomit esaslı levhalardan daha düşük olduğu farkına varılmıştır.

Supporting Institution

Süleyman Demirel Üniversitesi

Project Number

SDU BAP Project No: 4632-D2-16.

Thanks

Süleyman Demirel Üniversitesi

References

  • Aamr-Daya E, Langlet T, Benazzouk A, Quéneudec M (2008). Feasibility study of lightweight cement composite containing flax by-product particles: Physico-mechanical properties. Cement Concrete Comp. 30: 957–963.
  • Aggarwal LK, Agrawal SP, Thapliyal PC, Karade SR (2008). Cement-bonded composite boards with arhar stalks. Cement Concrete Comp. 30: 44–51.
  • Agrawal, Y., Gupta, T., Siddique, S., & Sharma, R. K. (2021). Potential of dolomite industrial waste as construction material: a review. Innovative Infrastructure Solutions, 6(4), 1-15.
  • ASTM C1113/C1113M-09 (2019). Standard Test Method for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique). ASTM International West Conshohocken, PA.
  • Bergland, L. and Rowell, R.M. (2005). Wood composites, Ch.10, In: Handbook of wood chemistry and wood composites, Roger M. Rowell (Ed), CRC Press, New York, pp.279-302.
  • Can, A., & Sivrikaya, H. (2017). Combined effects of copper and oil treatment on the properties of Scots pine wood. Drewno: 60 (199), 89-103.
  • Ceylan, E., & Pekgözlü, A. K. (2019). Utilization of Trapa natans. Journal of Anatolian Environmental and Animal Sciences, 4(4), 688-694.
  • Forest Products Laboratory (2010). Wood Handbook-Wood as an engineering material, General Technical Report FPL-GTR-190, Madison, WI, 508p.
  • Kozlowski R, Helwig M, Przepiera A. (1995). Light-weight, environmentally friendly, fire retardant composite boards for panelling and construction. Inorganic-bonded wood and fiber composite materials, USA, 1995. p. 6±11.
  • Maloney, T.M. (1996). The family of wood composite materials, Forest Products Journal, 46 (2), 19-26.
  • McKeever, D. B. (1997). Engineered wood products: a response to the changing timber resource. Pacific Rim Wood Market Report, 123(5), 15.
  • Ndazi, B., Tesha, J. V. and Bisanda E.T.N. (2006). Some opportunities and challenges of producing bio-composites from non-wood residues, J. Mater Sci., 41,6984–6990.
  • Meng, X., Huang, Y., Cao, Y., Gao, Y., Hou, C., Zhang, L., & Shen, Q. (2018). Optimization of the wall thermal insulation characteristics based on the intermittent heating operation. Case studies in construction materials, 9, e00188.
  • Nicolaci, A., Travaglini, D., Menguzzato, G., Nocentini, S., Veltri, A., & Iovino, F. (2014). Ecological and anthropogenic drivers of Calabrian pine (Pinus nigra JF Arn. Ssp. Laricio (Poiret) Maire) distribution in the Sila mountain range. iForest-Biogeosciences and Forestry, 8(4), 497.
  • Özdemir, F. (2016). Yüksek Yoğunluklu Lif Levhanın Bazı Özellikleri Üzerine Dolomit Mineralinin Etkisinin Araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi 19, 93-98.
  • Özdemir, F., Tutuş, A., Çiçekler, M. (2016). Effect of Dolomite Mineral on Surface Roughness of High Density Fiberboard (HDF). In 2nd International Furniture Congress (pp. 498-501).
  • Papadopoulos, A. N. (2019). Advances in wood composites. Polymers, 12(1), 48.
  • Rials, G. T. and Wolcott, M.P. (1997). Physical and mechanical properties of agro-based fibers, In: Paper and composites from agro based resources, Rowell, R.M., Young, R.A., Rowell, J.K. (Eds), CRC Press Inc, Boca Raton, Florida, 63-81 pp.
  • Sahin, H.T., Arslan, M.B., Korkut, S., & Sahin, C. (2011). Colour changes of heat‐treated woods of red‐bud maple, European hophornbeam and oak. Color Research & Application, 36(6), 462-466.
  • Sahin, C. K., Topay, M., & Var, A. A. (2020). A study on suitability of some wood species for landscape applications: surface color, hardness and roughness changes at outdoor conditions. Wood Research, 65(3), 395-404.
  • Sahin, H.T., Arslan, M.B. (2011). Weathering performance of particleboards manufactured from blends of forest residues with Red pine (Pinus brutia) wood, Maderas: Ciencia y Technologia, 13 (3), 337-346.
  • Sahin, H. T., Simsek, Y. (2021). Mineral-Bonded Wood Composites: An Alternative Building Materials. In Engineered Wood Products for Construction. IntechOpen.
  • Suchland, O., Woodson, G. (1987). Fiberboard Manufacturing Practices in the United States, Department of Agriculture Forest Service Agriculture Handboolk No. 640, Washington DC.
  • TS-EN 11925-2:2002. Reaction to fire tests- Ignitability of building products subjected to direct impingement of flame- Part 2: Single-flame source test, TSE, Ankara.
  • Yalcin, O.U. (2018). Investigation of performance properties of panels produced from some lignocellulosic sources with mineral (dolomite and olivine) additives, (Ph.D thesis; Turkish, abstract is in English), Isparta University of Applied Sciences, the Institute for Graduate Education, Department of Forest Product Engineering, Isparta-Turkey (169p.).
  • Yalçın, Ö. Ü., Şahin, H. T., & Kaya, A. İ. (2019). Investigation of some performance properties of panels produced from Red pine Bark and Cone sources with dolomite. ICONST LST 2019, 41
  • Yalçın, Ö. Ü., Kaya, A. İ., & Şahin, H. T. (2020). Mineral Based Boards made from Lignocellulosic Wastes: 1st Part-Physical And Mechanical Properties. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 142-149.
  • Yilgor, N., Dogu, D., Moore, R., Terzi, E., & Kartal, S.N. (2013). Evaluation of fungal deterioration in Liquidambar orientalis Mill. Heartwood by FT-IR and light microscopy. BioResources, 8, 2805–2826.

Properties of experimental panels made from a mixture of Dolomite and Olivine with Calabrian pine wood chips. Part 2.Technological Properties

Year 2023, Volume: 25 Issue: 3, 388 - 397, 15.12.2023
https://doi.org/10.24011/barofd.1240477

Abstract

The selected physicochemical properties of urea-formaldehyde bonded experimental panels which produced with two mineral adducts (dolomite and olivine) as proportion in Calabrian pine wood chips were evaluated. It appears each mineral adducts improve the surface discoloration changes rather than control samples. The highest lightness change (darker surface) was found with control (∆L:-13.13). However, only a sample of PY1 shows greener color surface (∆a: -0,39) while others show less red color properties (∆a: 1.06 to 3.40 for dolomite-based panels and ∆a: 0.80 to 1.49 for olivine-based panels) than control (PX0/PY0: 3.55). It has been found that the lowest discoloration (improvement) was found to be PX1 sample which is approximately 63% lower than the control (∆E PX0: 13.62, ∆E PX1: 5.03) for dolomite-formulated boards. For olivine-formulated boards that the lowest discoloration was found with sample PY2 which shows approximately 87% lower than the control (∆E PY0: 13.62, ∆E PY2: 1.73). Olivine appears to be more effective for preservation against discoloration from outdoor exposure at similar experimental conditions than dolomite. Although experimental panels show some level lower heat conduction which improves insulation properties, all dolomite- and olivine-based panel’s conduction values were found to be higher than the standard value of λ: 0.065 W/mK. The adducts formulated panels have shown lowering mass loss (%) in burning tests which was found to be in the range of 11.98% (PX1) to 17.39% (PX0) for dolomite-based panels and in the range of 10.85% (PY5) to 17.35% (PY0) for olivine-based panels. It is noticeable that olivine-based panels show lower mass loss against heat than dolomite-based panels at similar experimental conditions. It is also found that dolomite and olivine improve the combustion properties of experimental panels to a certain extent.

Project Number

SDU BAP Project No: 4632-D2-16.

References

  • Aamr-Daya E, Langlet T, Benazzouk A, Quéneudec M (2008). Feasibility study of lightweight cement composite containing flax by-product particles: Physico-mechanical properties. Cement Concrete Comp. 30: 957–963.
  • Aggarwal LK, Agrawal SP, Thapliyal PC, Karade SR (2008). Cement-bonded composite boards with arhar stalks. Cement Concrete Comp. 30: 44–51.
  • Agrawal, Y., Gupta, T., Siddique, S., & Sharma, R. K. (2021). Potential of dolomite industrial waste as construction material: a review. Innovative Infrastructure Solutions, 6(4), 1-15.
  • ASTM C1113/C1113M-09 (2019). Standard Test Method for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique). ASTM International West Conshohocken, PA.
  • Bergland, L. and Rowell, R.M. (2005). Wood composites, Ch.10, In: Handbook of wood chemistry and wood composites, Roger M. Rowell (Ed), CRC Press, New York, pp.279-302.
  • Can, A., & Sivrikaya, H. (2017). Combined effects of copper and oil treatment on the properties of Scots pine wood. Drewno: 60 (199), 89-103.
  • Ceylan, E., & Pekgözlü, A. K. (2019). Utilization of Trapa natans. Journal of Anatolian Environmental and Animal Sciences, 4(4), 688-694.
  • Forest Products Laboratory (2010). Wood Handbook-Wood as an engineering material, General Technical Report FPL-GTR-190, Madison, WI, 508p.
  • Kozlowski R, Helwig M, Przepiera A. (1995). Light-weight, environmentally friendly, fire retardant composite boards for panelling and construction. Inorganic-bonded wood and fiber composite materials, USA, 1995. p. 6±11.
  • Maloney, T.M. (1996). The family of wood composite materials, Forest Products Journal, 46 (2), 19-26.
  • McKeever, D. B. (1997). Engineered wood products: a response to the changing timber resource. Pacific Rim Wood Market Report, 123(5), 15.
  • Ndazi, B., Tesha, J. V. and Bisanda E.T.N. (2006). Some opportunities and challenges of producing bio-composites from non-wood residues, J. Mater Sci., 41,6984–6990.
  • Meng, X., Huang, Y., Cao, Y., Gao, Y., Hou, C., Zhang, L., & Shen, Q. (2018). Optimization of the wall thermal insulation characteristics based on the intermittent heating operation. Case studies in construction materials, 9, e00188.
  • Nicolaci, A., Travaglini, D., Menguzzato, G., Nocentini, S., Veltri, A., & Iovino, F. (2014). Ecological and anthropogenic drivers of Calabrian pine (Pinus nigra JF Arn. Ssp. Laricio (Poiret) Maire) distribution in the Sila mountain range. iForest-Biogeosciences and Forestry, 8(4), 497.
  • Özdemir, F. (2016). Yüksek Yoğunluklu Lif Levhanın Bazı Özellikleri Üzerine Dolomit Mineralinin Etkisinin Araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi 19, 93-98.
  • Özdemir, F., Tutuş, A., Çiçekler, M. (2016). Effect of Dolomite Mineral on Surface Roughness of High Density Fiberboard (HDF). In 2nd International Furniture Congress (pp. 498-501).
  • Papadopoulos, A. N. (2019). Advances in wood composites. Polymers, 12(1), 48.
  • Rials, G. T. and Wolcott, M.P. (1997). Physical and mechanical properties of agro-based fibers, In: Paper and composites from agro based resources, Rowell, R.M., Young, R.A., Rowell, J.K. (Eds), CRC Press Inc, Boca Raton, Florida, 63-81 pp.
  • Sahin, H.T., Arslan, M.B., Korkut, S., & Sahin, C. (2011). Colour changes of heat‐treated woods of red‐bud maple, European hophornbeam and oak. Color Research & Application, 36(6), 462-466.
  • Sahin, C. K., Topay, M., & Var, A. A. (2020). A study on suitability of some wood species for landscape applications: surface color, hardness and roughness changes at outdoor conditions. Wood Research, 65(3), 395-404.
  • Sahin, H.T., Arslan, M.B. (2011). Weathering performance of particleboards manufactured from blends of forest residues with Red pine (Pinus brutia) wood, Maderas: Ciencia y Technologia, 13 (3), 337-346.
  • Sahin, H. T., Simsek, Y. (2021). Mineral-Bonded Wood Composites: An Alternative Building Materials. In Engineered Wood Products for Construction. IntechOpen.
  • Suchland, O., Woodson, G. (1987). Fiberboard Manufacturing Practices in the United States, Department of Agriculture Forest Service Agriculture Handboolk No. 640, Washington DC.
  • TS-EN 11925-2:2002. Reaction to fire tests- Ignitability of building products subjected to direct impingement of flame- Part 2: Single-flame source test, TSE, Ankara.
  • Yalcin, O.U. (2018). Investigation of performance properties of panels produced from some lignocellulosic sources with mineral (dolomite and olivine) additives, (Ph.D thesis; Turkish, abstract is in English), Isparta University of Applied Sciences, the Institute for Graduate Education, Department of Forest Product Engineering, Isparta-Turkey (169p.).
  • Yalçın, Ö. Ü., Şahin, H. T., & Kaya, A. İ. (2019). Investigation of some performance properties of panels produced from Red pine Bark and Cone sources with dolomite. ICONST LST 2019, 41
  • Yalçın, Ö. Ü., Kaya, A. İ., & Şahin, H. T. (2020). Mineral Based Boards made from Lignocellulosic Wastes: 1st Part-Physical And Mechanical Properties. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 142-149.
  • Yilgor, N., Dogu, D., Moore, R., Terzi, E., & Kartal, S.N. (2013). Evaluation of fungal deterioration in Liquidambar orientalis Mill. Heartwood by FT-IR and light microscopy. BioResources, 8, 2805–2826.
There are 28 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Research Articles
Authors

Halil Turgut Şahin 0000-0001-5633-6505

Ömer Ümit Yalçın 0000-0003-2241-3677

Ali İhsan Kaya 0000-0002-1860-9610

Uğur Özkan 0000-0003-0147-9976

Project Number SDU BAP Project No: 4632-D2-16.
Early Pub Date November 23, 2023
Publication Date December 15, 2023
Published in Issue Year 2023 Volume: 25 Issue: 3

Cite

APA Şahin, H. T., Yalçın, Ö. Ü., Kaya, A. İ., Özkan, U. (2023). Properties of experimental panels made from a mixture of Dolomite and Olivine with Calabrian pine wood chips. Part 2.Technological Properties. Bartın Orman Fakültesi Dergisi, 25(3), 388-397. https://doi.org/10.24011/barofd.1240477


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com