Research Article
BibTex RIS Cite

Karaçam Odununun Elastik Sabitlerinin Farklı Rutubet Şartlarında Ultrasonik Yöntem ile Belirlenmesi

Year 2023, Volume: 25 Issue: 3, 353 - 361, 15.12.2023
https://doi.org/10.24011/barofd.1252324

Abstract

Bu çalışmada Anadolu karaçamı odununun elastik sabitleri, farklı rutubet şartları altında ultrasonik yöntem ve basma testleri kullanılarak incelenmiştir. Üç elastikiyet modülü (EL, ER, ET), üç kayma modülü (GLR, GLT, GRT) ve altı Poisson oranı (ʋLR, ʋLT, ʋRL, ʋRT, ʋTL, ʋTR) hesaplanmıştır. Ultrasonik yöntemde kenar uzunluğu 2 cm olan kübik örnekler kullanılırken basma testleri 2 x 2 x 6 cm boyutlarındaki örneklere uygulanmıştır. Lif yönü (L), radyal (R) ve teğet (T) yönlerde boyuna ve enine ultrasonik ses dalgası hızları sırasıyla 2.25 MHz ve 1 MHz sensörler kullanılarak ölçülmüştür. Poisson oranlarının belirlenmesi için L, R ve T yönlerine 45° açıyla enine ses dalgası hızları da 1 MHz sensörle ölçülmüştür. Ultrasonik yöntemi doğrulamak için basma testleri yapılmıştır. Basma testlerinden hesaplanan değerlerle karşılaştırıldığında, L, R ve T yönlerinde ultrasonik yöntemle tahmin edilen elastikiyet modülü değerleri benzerdir. Ultrasonik yöntemle hesaplanan kayma modülü değerleri, basma testlerinden hesaplanan değerlerden GRT hariç biraz yüksektir. Poisson oranlarında daha yüksek farklar olmasına rağmen kabul edilebilir görünmektedir. Çalışma sonuçlarına göre, farklı rutubet koşullarında karaçam için elastik sabitlerin belirlenmesinde alternatif olarak ultrasonik yöntemin kullanılabileceği sonucuna varılabilir.

References

  • Aira, J. R., Arriaga. F. & Gonzalez, G. I. (2014). Determination of the elastic constants of Scots pine (Pinus sylvestris L.) wood by means of compression. Biosystems Engineering, 126, 12-22.
  • Aydin, T.Y. & Ozveren, A. 2019. Effects of moisture content on elastic constants of fir wood. European Journal of Wood and Wood Products, 77, 63–70.
  • Baradit, E. & Niemz, P. (2012). Elastic Constants of Some Native Chilean Wood Species Using Ultrasound Techniques. Wood Research, 57(3), 497-504.
  • Beall, F. C. (2002). Overview of the use of ultrasonic technologies in research on wood properties. Wood Science and Technology, 36(3), 197-212.
  • Bodig, J. & Jayne, B. A. (1993). Mechanics of wood and wood composites, Malabar, USA: Krieger Publishing Company.
  • Brashaw, B. K., Bucur, V., Divos, F., Goncalves, R., Lu, J. & Meder, R. (2009). Nondestructive testing and evaluation of wood: A worldwide research update. Forest Products Journal, 59(3), 7-14.
  • Bucur, V. (2006). Acoustics of wood, Springer Verlag, Berlin.
  • Bucur, V. & Archer, R. R. (1984). Elastic constants for wood by an ultrasonic method. Wood Science and Technology, 18, 255-265.
  • Dackermann, U., Elsener, R., Li, J. & Crews, K. (2016). A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood. Construction and Building Materials, 102, 963-976.
  • Dahl, K. B. (2009). Mechanical properties of clear wood from Norway Spruce. Doctoral theses. Norwegian University of Science and Technology, Trondheim, Norway. (Yayımlanmamış doktora tezi)
  • Davies, N. T., Altaner, C. M. & Apiolaza, L. A. (2016). Elastic constants of green Pinus radiata wood. New Zealand Journal of Forest Science, December, 46:19.
  • Dinwoodie, J. M. (2000). Timber: Its Nature and Behavior, CRC Press, London.
  • Divos, F., Tanaka, T., Nagao, H. & Kato, H. (1998). Determination of shear modulus on construction size timber. Wood Science and Technology, 32, 393-402.
  • Dündar, T. & Divos, F. (2014). European wood NDT&NDE research and practical applications. Eurasian Journal of Forest Science, 1(1), 35-43.
  • Esteban, L. G., Fernandez, F. G. & de Palacios, P. (2009). MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using nondestructive testing. Computers and Structures, 87, 1360-1365.
  • Gonçalves, R., Trinca, A. J. & Cerri, D. G. P. (2011). Comparison of Elastic Constants of Wood Determined by Ultrasonic Wave Propagation and Static Compression Testing. Wood and Fiber Science, 43(1), 64-75.
  • Gonçalvez, R., Trinca, A. J. & Pellis, B. P. (2014). Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Science and Technology, 48, 269-287.
  • Güntekin, E. 2022. Sedir Odununun (Cedrus libani A.) Elastik Sabitleri. Bartın Orman Fakültesi Dergisi, 24(3), 436-443.
  • Güntekin, E. & Akar, S. 2019. Influence of moisture content on elastic constants of scots pine wood subjected to compression. Drewno, 62(204), 41-53.
  • Güntekin, E. & Demiratlı, S. 2017. Influence of Moisture Content on Some Elastic Constants of Black Pine Subjected to Compression. Pro Ligno, 13(2), 21-26.
  • Güntekin, E., Aydın, T. Y. & Niemz, P. (2016a). Some Orthotropic Elastic Properties of Fagus orientalis as Influenced by Moisture Content. Wood Research, 61(1), 95-104.
  • Güntekin, E., Aydın, T. Y. & Niemz, P. (2016b). Some Orthotropic Mechanical Properties of Sessile Oak (Quercus Petrea) as Influenced by Moisture Content. Eurasian Journal of Forest Science, 4(1), 40-47.
  • Harrison, S. K. (2006). Comparison of Shear Modulus Test Methods. Master’s Thesis, Virginia Polytechnic and State University, Blacksburg, USA. (Yayımlanmamış yüksek lisans tezi)
  • Hering, S., Keunecke, D. & Niemz, P. (2012). Moisture-dependent orthotropic elasticity of beech wood. Wood Science and Technology, 45, 927–938.
  • Keunecke, D., Merz, T., Sonderegger, W., Schnider, T. & Niemz, P. (2011). Stiffness moduli of various softwood and hardwood species determined with ultrasound. Wood Material Science and Engineering, 6, 91-94.
  • Kretschmann, D. E. & Green, D. W. (1996). Modeling moisture content-mechanical property relationships for clear Southern Pine. Wood and Fiber Science, 28(3), 320-337.
  • Kretschmann, D. E. (2010). Mechanical Properties of Wood “in: Wood Handbook: Wood as an Engineering Material, R.J. Ross (ed.), General Technical Report FPL-GTR 190, USDA Forest Products Laboratory, Madison.
  • Llana, D. F., Gonzalez, G. I., Arriaga, F. & Niemz, P. (2014). Influence of Temperature and Moisture Content on Non-Destructive Measurements in Scots Pine Wood. Wood Research, 59(5), 769-780.
  • Mizutani, M. & Ando, K. (2015). Influence of a wide range of moisture contents on the Poisson’s ratio of wood. Journal of Wood Science, 61(1), 81-85.
  • Oliveira, R. G. F., de Candian, M., Lucchette, F. F., Salgon, J. L. & Sales, A. (2005). Moisture content effect on ultrasonic velocity in Goupia glabra. Material Research, 8, 11–14.
  • Ozyhar, T., Hering, S., Sanabria, S.J. & Niemz, P. (2013). Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Science and Technology, 47, 329-341.
  • Ozyhar, T., Mohl, L., Hering, S., Hass, P., Zeindler, L., Ackermann, R. & Niemz P. (2014). Orthotropic hygric and mechanical material properties of oak wood. Journal of Wood Material Science and Engineering, 11(1), 36-45.
  • Vazquez, C., Golçalvez, R., Bertoldo, C., Bano, V., Vega, A., Crespo, J. & Guaita, M. D. (2015). Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and compression with static compression and bending methods. Wood Science and Technology, 49, 607-622.

Determination of Elastic Constants for Black Pine Wood Using Ultrasound under Different Humidity Regimes

Year 2023, Volume: 25 Issue: 3, 353 - 361, 15.12.2023
https://doi.org/10.24011/barofd.1252324

Abstract

In this study, elastic constants of Anatolian black pine wood were investigated using ultrasonic method under different humidity conditions. Three modulus of elasticity (EL, ER, ET), three shear modulus (GLR, GLT, GRT), and six Poisson's ratios (ʋLR, ʋLT, ʋRL, ʋRT, ʋTL, ʋTR) were calculated using cubic samples with a length of 2 cm. Longitudinal and transverse ultrasonic sound wave velocities in fiber (L), radial (R) and tangential (T) directions were measured using 2.25 MHz and 1 MHz sensors, respectively. In order to determine the Poisson ratios, transverse sound wave velocities at an angle of 45° to the L, R and T directions were also measured with a 1 MHz sensor. Sound velocities measured in black pine samples are inversely proportional to the increase in humidity. Overall, the results show the well-known order between sound velocities (V11> V22> V66> V55> V33> V44). Compared to the values found in the literature; elastic modulus values estimated by ultrasonic method in L, R and T directions are similar, shear modulus values are slightly higher except for GRT. Although there are higher differences in Poisson's ratios, they are acceptable values. Results of the study indicate that ultrasonic method can be used as an alternative to determine the elastic constants for black pine wood under different humidity conditions.

References

  • Aira, J. R., Arriaga. F. & Gonzalez, G. I. (2014). Determination of the elastic constants of Scots pine (Pinus sylvestris L.) wood by means of compression. Biosystems Engineering, 126, 12-22.
  • Aydin, T.Y. & Ozveren, A. 2019. Effects of moisture content on elastic constants of fir wood. European Journal of Wood and Wood Products, 77, 63–70.
  • Baradit, E. & Niemz, P. (2012). Elastic Constants of Some Native Chilean Wood Species Using Ultrasound Techniques. Wood Research, 57(3), 497-504.
  • Beall, F. C. (2002). Overview of the use of ultrasonic technologies in research on wood properties. Wood Science and Technology, 36(3), 197-212.
  • Bodig, J. & Jayne, B. A. (1993). Mechanics of wood and wood composites, Malabar, USA: Krieger Publishing Company.
  • Brashaw, B. K., Bucur, V., Divos, F., Goncalves, R., Lu, J. & Meder, R. (2009). Nondestructive testing and evaluation of wood: A worldwide research update. Forest Products Journal, 59(3), 7-14.
  • Bucur, V. (2006). Acoustics of wood, Springer Verlag, Berlin.
  • Bucur, V. & Archer, R. R. (1984). Elastic constants for wood by an ultrasonic method. Wood Science and Technology, 18, 255-265.
  • Dackermann, U., Elsener, R., Li, J. & Crews, K. (2016). A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood. Construction and Building Materials, 102, 963-976.
  • Dahl, K. B. (2009). Mechanical properties of clear wood from Norway Spruce. Doctoral theses. Norwegian University of Science and Technology, Trondheim, Norway. (Yayımlanmamış doktora tezi)
  • Davies, N. T., Altaner, C. M. & Apiolaza, L. A. (2016). Elastic constants of green Pinus radiata wood. New Zealand Journal of Forest Science, December, 46:19.
  • Dinwoodie, J. M. (2000). Timber: Its Nature and Behavior, CRC Press, London.
  • Divos, F., Tanaka, T., Nagao, H. & Kato, H. (1998). Determination of shear modulus on construction size timber. Wood Science and Technology, 32, 393-402.
  • Dündar, T. & Divos, F. (2014). European wood NDT&NDE research and practical applications. Eurasian Journal of Forest Science, 1(1), 35-43.
  • Esteban, L. G., Fernandez, F. G. & de Palacios, P. (2009). MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using nondestructive testing. Computers and Structures, 87, 1360-1365.
  • Gonçalves, R., Trinca, A. J. & Cerri, D. G. P. (2011). Comparison of Elastic Constants of Wood Determined by Ultrasonic Wave Propagation and Static Compression Testing. Wood and Fiber Science, 43(1), 64-75.
  • Gonçalvez, R., Trinca, A. J. & Pellis, B. P. (2014). Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Science and Technology, 48, 269-287.
  • Güntekin, E. 2022. Sedir Odununun (Cedrus libani A.) Elastik Sabitleri. Bartın Orman Fakültesi Dergisi, 24(3), 436-443.
  • Güntekin, E. & Akar, S. 2019. Influence of moisture content on elastic constants of scots pine wood subjected to compression. Drewno, 62(204), 41-53.
  • Güntekin, E. & Demiratlı, S. 2017. Influence of Moisture Content on Some Elastic Constants of Black Pine Subjected to Compression. Pro Ligno, 13(2), 21-26.
  • Güntekin, E., Aydın, T. Y. & Niemz, P. (2016a). Some Orthotropic Elastic Properties of Fagus orientalis as Influenced by Moisture Content. Wood Research, 61(1), 95-104.
  • Güntekin, E., Aydın, T. Y. & Niemz, P. (2016b). Some Orthotropic Mechanical Properties of Sessile Oak (Quercus Petrea) as Influenced by Moisture Content. Eurasian Journal of Forest Science, 4(1), 40-47.
  • Harrison, S. K. (2006). Comparison of Shear Modulus Test Methods. Master’s Thesis, Virginia Polytechnic and State University, Blacksburg, USA. (Yayımlanmamış yüksek lisans tezi)
  • Hering, S., Keunecke, D. & Niemz, P. (2012). Moisture-dependent orthotropic elasticity of beech wood. Wood Science and Technology, 45, 927–938.
  • Keunecke, D., Merz, T., Sonderegger, W., Schnider, T. & Niemz, P. (2011). Stiffness moduli of various softwood and hardwood species determined with ultrasound. Wood Material Science and Engineering, 6, 91-94.
  • Kretschmann, D. E. & Green, D. W. (1996). Modeling moisture content-mechanical property relationships for clear Southern Pine. Wood and Fiber Science, 28(3), 320-337.
  • Kretschmann, D. E. (2010). Mechanical Properties of Wood “in: Wood Handbook: Wood as an Engineering Material, R.J. Ross (ed.), General Technical Report FPL-GTR 190, USDA Forest Products Laboratory, Madison.
  • Llana, D. F., Gonzalez, G. I., Arriaga, F. & Niemz, P. (2014). Influence of Temperature and Moisture Content on Non-Destructive Measurements in Scots Pine Wood. Wood Research, 59(5), 769-780.
  • Mizutani, M. & Ando, K. (2015). Influence of a wide range of moisture contents on the Poisson’s ratio of wood. Journal of Wood Science, 61(1), 81-85.
  • Oliveira, R. G. F., de Candian, M., Lucchette, F. F., Salgon, J. L. & Sales, A. (2005). Moisture content effect on ultrasonic velocity in Goupia glabra. Material Research, 8, 11–14.
  • Ozyhar, T., Hering, S., Sanabria, S.J. & Niemz, P. (2013). Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Science and Technology, 47, 329-341.
  • Ozyhar, T., Mohl, L., Hering, S., Hass, P., Zeindler, L., Ackermann, R. & Niemz P. (2014). Orthotropic hygric and mechanical material properties of oak wood. Journal of Wood Material Science and Engineering, 11(1), 36-45.
  • Vazquez, C., Golçalvez, R., Bertoldo, C., Bano, V., Vega, A., Crespo, J. & Guaita, M. D. (2015). Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and compression with static compression and bending methods. Wood Science and Technology, 49, 607-622.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Forest Industry Engineering
Journal Section Research Articles
Authors

Ergün Güntekin 0000-0002-8423-6664

Early Pub Date November 23, 2023
Publication Date December 15, 2023
Published in Issue Year 2023 Volume: 25 Issue: 3

Cite

APA Güntekin, E. (2023). Karaçam Odununun Elastik Sabitlerinin Farklı Rutubet Şartlarında Ultrasonik Yöntem ile Belirlenmesi. Bartın Orman Fakültesi Dergisi, 25(3), 353-361. https://doi.org/10.24011/barofd.1252324


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com