Research Article
BibTex RIS Cite

Elemental Composition of A Cultivated Mushroom (Agaricus bisporus) and Some Wild Mushroom Species

Year 2024, Volume: 26 Issue: 1, 55 - 63, 29.02.2024
https://doi.org/10.24011/barofd.1380972

Abstract

In the study, a cultivation mushroom (Agaricus bisporus) and some wild mushroom species (Schizophyllum commune, Pleurotus ostreatus, Lactarius deliciosus, Hebeloma sinapizans, Hygrophorus ligatus, Suillus luteus, Armillaria mellea, Coprinus comatus, Psathyrella candolleana, Russula torulosa, Trametes pubescens) were investigated in terms of elemental compositions. The wild mushroom species were collected from Trabzon province. Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, I, Hf, Hg, Pb metal concentrations were determined using Energy Dispersive X-ray Fluorescence (ED-XRF) device. The highest aliminium, silicium, vanadium, zirconium, iron and mercury were determined in Lactarius deliciosus. The highest potassium, arsenic, rubidium, iodine contents were determined in Hebeloma sinapizans. The highest manganese, zinc, lead contents were determined in Hygrophorus ligatus. The highest magnesium, chromium, nickel, yttrium contents were determined in Coprinus comatus. The highest titanium and selenium were determined in Psathyrella candolleana. The highest calcium and strontium were determined in Russula torulosa. The highest hafnium was determined in Schizophyllum commune. The highest phosphate was determined in Agaricus bisporus. The highest sulphur was determined in Armilleria mella. The highest copper was determined in Suillus lutesus. It was concluded that elemental composition of mushrooms was affected especially by mushroom specie.

Supporting Institution

This work was supported by Karadeniz Technical University Scientific Research Projects Unit (FBA-2017-5579).

Project Number

FBA-2017-5579

References

  • Akgül, H., Nur, A. D., Sevindik, M. and Doğan, M. (2016). Tricholoma terreum ve Coprinus micaceus’ un bazı biyolojik aktivitelerinin belirlenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 17(2), 158-162.
  • Anwar, S., Nawaz, M. F., Gul, S., Rizwan, M., Ali, S. and Kareem, A. (2016). Uptake and distribution of minerals and heavy metals in commonly grown leafy vegetable species irrigated with sewage water. Environmental Monitoring and Assessment, 188 (9), 541-549.
  • Atamaleki, A., Yazdanbakhsh, A., Fakhri, Y., Mahdipour, F., Khodakarim, S. and Khaneghah, A. M. (2019). The concentration of potentially toxic elements (PTEs) in the onion and tomato irrigated by wastewater: a systematic review; meta-analysis and health risk assessment. Food Research International, 125, 108518.
  • Baba, H., Ergün, N. and Özçubukçu, S. (2012). Determination of heavy metal accumulation and mineral contents of some macrofungi in Antakya (Hatay). BİBAD, Biyoloji Bilimleri Araștırma Dergisi, 5(1), 5-6.
  • Bjørklund, G., Aaseth, J., Skalny, A. V., Suliburska, J., Skalnaya, M. G., Nikonorov, A. A. and Tinkov, A. A. (2017). Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. Journal of Trace Elements in Medicine and Biology, 41, 41-53.
  • Bulam, S., Üstün, N. Ş. and Pekşen, A. (2019). Yenebilir doğa mantarlarının bazı fiziksel ve fizikokimyasal özellikleri ile mineral madde içeriklerinin belirlenmesi. Mantar Dergisi, 10(3), 193-203.
  • Cocchi, L., Vescovi, L., Petrini, L. E. And Petrini, O. (2006). Heavy metals in edible mushrooms in Italy. Food Chemistry, 98(2), 277-284.
  • Curtis, C. E., Doney, L. M. and Johnson, J. R. (1954). Some properties of hafnium oxide, hafnium silicate, calcium hafnate, and hafnium carbide. Journal of the American Ceramic Society, 37(10), 458-465.
  • Demirbaş, A. (2000). Accumulation of heavy metals in some edible mushrooms from Turkey. Food Chemistry, 68(4), 415-419.
  • Dowlati, M., Sobhi, H. R., Esrafili, A., FarzadKia, M. and Yeganeh, M. (2021). Heavy metals content in edible mushrooms: A systematic review, meta-analysis and health risk assessment. Trends in Food Science & Technology, 109, 527-535.
  • Falandysz, J., Kawano, M., Świeczkowski, A., Brzostowski, A. and Dadej, M. (2003). Total mercury in wild-grown higher mushrooms and underlying soil from Wdzydze Landscape Park, Northern Poland. Food Chemistry, 81(1), 21-26.
  • Fu, Z., Liu, G. and Wang, L. (2020). Assessment of potential human health risk of trace element in wild edible mushroom species collected from Yunnan Province, China. Environmental Science and Pollution Research, 27, 29218-29227.
  • Gadd, G. M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3-49.
  • Ghosh, S., Sharma, A. and Talukder, G. (1992). Zirconium: an abnormal trace element in biology. Biological Trace Element Research, 35, 247-271.
  • Isildak, Ö., Turkekul, I., Elmastas, M. And Tuzen, M. (2004). Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chemistry, 86(4), 547-552.
  • Işiloğlu, M., Merdivan, M. and Yilmaz, F. (2001). Heavy metal contents in some macrofungi collected in the northwestern part of Turkey. Archives of Environmental Contamination and Toxicology, 41, 1-7.
  • Jorhem, L., Åstrand, C., Sundström, B., Baxter, M., Stokes, P., Lewis, J. and Grawé, K. P. (2008). Elements in rice on the Swedish market: Part 2. Chromium, copper, iron, manganese, platinum, rubidium, selenium and zinc. Food Additives and Contaminants, 25(7), 841-850.
  • Kalač, P. and Stašková, I. (1991). Concentrations of lead, cadmium, mercury and copper in mushrooms in the vicinity of a lead smelter. Science of the Total Environment, 105, 109-119.
  • Kalač, P. and Svoboda, L. (2000). A review of trace element concentrations in edible mushrooms. Food Chemistry, 69(3), 273-281.
  • Kokkoris, V., Massas, I., Polemis, E., Koutrotsios, G. and Zervakis, G. I. (2019). Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Science of The Total Environment, 685, 280-296.
  • Koyyalamudi, S. R., Jeong, S. C., Manavalan, S., Vysetti, B. and Pang, G. (2013). Micronutrient mineral content of the fruiting bodies of Australian cultivated Agaricus bisporus white button mushrooms. Journal of Food Composition and Analysis, 31(1), 109-114.
  • Lasota, W., Florczak, J. and Karmańska, A. (1990). Effect of growing conditions on accumulation of some toxic substances in mushrooms: Part I. Studies on Hg, Cd, Pb and Zn absorption by Agaricus bisporus Lange and Pleurotus ostreatus Jacq. Fr. Kumm. Bromatologia i Chemia Toksykologiczna, 23, 95-99.
  • Li, G.S.F. and Chang, S.T. (1982). The nucleic acid content of some edible mushrooms. European Journal f Applied Microbiology and Biotechnology, 15, 237-240.
  • Lossow, K., Schwerdtle, T., and Kipp, A. (2019). Selenium and iodine–essential trace elements for the thyroid. Ernahrungs Umschau, 66, 175-180.
  • Matta, G., and Gjyli, L. (2016). Mercury, lead and arsenic: impact on environment and human health. Journal of Chemical and Pharmaceutical Sciences, 9(2), 718-725.
  • Mehri, A. (2020). Trace elements in human nutrition (II)–an update. International Journal of Preventive Medicine, 11(2), 1-17.
  • Melnyk, L. J., Donohue, M. J., Pham, M. and Donohue, J. (2019). Absorption of strontium by foods prepared in drinking water. Journal of Trace Elements in Medicine and Biology, 53, 22-26.
  • Mleczek, M., Siwulski, M., Mikołajczak, P., Goliński, P., Gąsecka, M., Sobieralski, K., Dawidowicz L. and Szymańczyk, M. (2015). Bioaccumulation of elements in three selected mushroom species from southwest Poland. Journal of Environmental Science and Health, Part B, 50(3), 207-216.
  • Mleczek, M., Budka, A., Siwulski, M., Mleczek, P., Budzyńska, S., Proch, J., Gąsecka, M., Niedzielski, P. and Rzymski, P. (2021). A comparison of toxic and essential elements in edible wild and cultivated mushroom species. European Food Research and Technology, 247, 1249-1262.
  • Mushtaq, W., Hayri, B., Akata, I. and Sevindik, M. (2020). Antioxidant potential and element contents of wild edible mushroom Suillus granulatus. KSU J. Agric Nat, 23(3), 592-595.
  • Nielsen, F. H. (1998). Ultratrace elements in nutrition: current knowledge and speculation. The Journal of Trace Elements in Experimental Medicine: The Official Publication of the International Society for Trace Element Research in Humans, 11(2‐3), 251-274.
  • Nikkarinen, M. and Mertanen, E. (2004). Impact of geological origin on trace element composition of edible mushrooms. Journal of Food Composition and Analysis, 17(3-4), 301-310.
  • Ouzouni, P. K., Petridis, D., Koller, W. D. and Riganakos, K. A. (2009). Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chemistry, 115(4), 1575-1580.
  • Pandey, G. and Madhuri, S. (2014). Heavy metals causing toxicity in animals and fishes. Research Journal of Animal, Veterinary and Fishery Sciences, 2(2), 17-23.
  • Rácz, L., Papp, L. and Fodor, P. (1995). Migration analysis of elements from compost and casing material to the fruit bodies in cultivated mushrooms (Agaricus bisporus). Acta alimentaria (Budapest), 24(2), 161-166.
  • Sanglimsuwan, S., Yoshida, N., Morinaga, T. and Murooka, Y. (1993). Resistance to and uptake of heavy metals in mushrooms. Journal of Fermentation and Bioengineering, 75(2), 112-114.
  • Sarikurkcu, C., Yildiz, D., Akata, I. and Tepe, B. (2021). Evaluation of the metal concentrations of wild mushroom species with their health risk assessments. Environmental Science and Pollution Research, 28, 21437-21454.
  • Sesli, E. and Tüzen, M. (1999). Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey. Food Chemistry, 65(4), 453-460.
  • Sevindik, M. (2018). Antioxidant activity of ethanol extract of Daedaleopsis nitida medicinal mushroom from Turkey. Mycopath, 16(2), 47-49.
  • Singh, A. D., Khanna, K., Kour, J., Dhiman, S., Bhardwaj, T., Devi, K., Sharma, N., Kumar, P., Kapoor, N., Sharma, P., Arora, P., Sharma, A. and Bhardwaj, R. (2023). Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere, 137917.
  • Siwulski, M., Mleczek, M., Rzymski, P., Budka, A., Jasińska, A., Niedzielski, P., Kalač, P., Gąsecka, M., Budzyńska, S. and Mikołajczak, P. (2017). Screening the multi-element content of Pleurotus mushroom species using inductively coupled plasma optical emission spectrometer (ICP-OES). Food Analytical Methods, 10, 487-496.
  • Siwulski, M., Budka, A., Rzymski, P., Gąsecka, M., Kalač, P., Budzyńska, S., Magdziak, Z., Niedzielski, P., Mleczek, P. and Mleczek, M. (2020). Worldwide basket survey of multielemental composition of white button mushroom Agaricus bisporus. Chemosphere, 239, 124718.
  • Turfan, N., Karadeniz, M., and Ünal, S. (2016). Comparison of some chemical contents of Ganoderma lucidum (Curtis) P. Karst collected from nature and cultured on orange stump. Turkish Journal Of Agriculture-Food Science And Technology, 4(3), 158-162.
  • Tüzen, M., Özdemir, M. and Demirbaş, A. (1998). Study of heavy metals in some cultivated and uncultivated mushrooms of Turkish origin. Food Chemistry, 63(2), 247-251.
  • Wu, S., Bie, C., Su, H., Gao, Y. and Sun, X. (2022). The effective separation of yttrium and other heavy rare earth elements with salicylic acid derivatives. Minerals Engineering, 178, 107396.
  • Yamaç, M., Yıldız, D., Sarıkürkcü, C., Celikkollu, M. and Solak, M. H. (2007). Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chemistry, 103(2), 263-267.

Kültür Mantarı (Agaricus bisporus) ve Bazı Yabani Mantar Türlerinin Elementel Bileşimi

Year 2024, Volume: 26 Issue: 1, 55 - 63, 29.02.2024
https://doi.org/10.24011/barofd.1380972

Abstract

Bu çalışmada kültür mantarı (Agaricus bisporus) ve bazı yabani mantar türlerinin (Schizophyllum commune, Pleurotus ostreatus, Lactarius deliciosus, Hebeloma sinapizans, Hygrophorus ligatus, Suillus luteus, Armillaria mellea, Coprinus comatus, Psathyrella candolleana, Russula torulosa, Trametes pubescens) element bileşimleri açısından incelenmiştir. Yabani mantar türleri Trabzon ilinden toplanmıştır. Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, I, Hf, Hg, Pb metal konsantrasyonları Enerji dağınımlı X-ışını floresans (ED-XRF) cihazı kullanılarak belirlenmiştir. En yüksek aliminyum, silisyum, vanadyum, zirkonyum, demir ve cıva Lactarius deliciosus'ta belirlenmiştir. En yüksek potasyum, arsenik, rubidyum, iyot Hebeloma sinapizans'ta belirlenmiştir. En yüksek manganez, çinko ve kurşun Hygrophorus ligatus'ta tespit edilmiştir. En yüksek magnezyum, krom, nikel, itriyum ise Coprinus comatus'ta belirlenmiştir. En yüksek titanyum ve selenyum Psathyrella candolleana'da belirlenmiştir. En yüksek kalsiyum ve stronsiyum Russula torulosa'da tespit edilmiştir. En yüksek hafniyum Schizophyllum commune mantarında belirlenmiştir. En yüksek fosfat Agaricus bisporus'ta, en yüksek kükürt, Armilleria mella'da, en yüksek bakır ise Suillus lutesus'ta belirlenmiştir. Mantarların elementel kompozisyonunun özellikle mantar türünden etkilendiği sonucuna varılmıştır.

Supporting Institution

Karadeniz Technical University Scientific Research Projects Unit

Project Number

FBA-2017-5579

References

  • Akgül, H., Nur, A. D., Sevindik, M. and Doğan, M. (2016). Tricholoma terreum ve Coprinus micaceus’ un bazı biyolojik aktivitelerinin belirlenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 17(2), 158-162.
  • Anwar, S., Nawaz, M. F., Gul, S., Rizwan, M., Ali, S. and Kareem, A. (2016). Uptake and distribution of minerals and heavy metals in commonly grown leafy vegetable species irrigated with sewage water. Environmental Monitoring and Assessment, 188 (9), 541-549.
  • Atamaleki, A., Yazdanbakhsh, A., Fakhri, Y., Mahdipour, F., Khodakarim, S. and Khaneghah, A. M. (2019). The concentration of potentially toxic elements (PTEs) in the onion and tomato irrigated by wastewater: a systematic review; meta-analysis and health risk assessment. Food Research International, 125, 108518.
  • Baba, H., Ergün, N. and Özçubukçu, S. (2012). Determination of heavy metal accumulation and mineral contents of some macrofungi in Antakya (Hatay). BİBAD, Biyoloji Bilimleri Araștırma Dergisi, 5(1), 5-6.
  • Bjørklund, G., Aaseth, J., Skalny, A. V., Suliburska, J., Skalnaya, M. G., Nikonorov, A. A. and Tinkov, A. A. (2017). Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. Journal of Trace Elements in Medicine and Biology, 41, 41-53.
  • Bulam, S., Üstün, N. Ş. and Pekşen, A. (2019). Yenebilir doğa mantarlarının bazı fiziksel ve fizikokimyasal özellikleri ile mineral madde içeriklerinin belirlenmesi. Mantar Dergisi, 10(3), 193-203.
  • Cocchi, L., Vescovi, L., Petrini, L. E. And Petrini, O. (2006). Heavy metals in edible mushrooms in Italy. Food Chemistry, 98(2), 277-284.
  • Curtis, C. E., Doney, L. M. and Johnson, J. R. (1954). Some properties of hafnium oxide, hafnium silicate, calcium hafnate, and hafnium carbide. Journal of the American Ceramic Society, 37(10), 458-465.
  • Demirbaş, A. (2000). Accumulation of heavy metals in some edible mushrooms from Turkey. Food Chemistry, 68(4), 415-419.
  • Dowlati, M., Sobhi, H. R., Esrafili, A., FarzadKia, M. and Yeganeh, M. (2021). Heavy metals content in edible mushrooms: A systematic review, meta-analysis and health risk assessment. Trends in Food Science & Technology, 109, 527-535.
  • Falandysz, J., Kawano, M., Świeczkowski, A., Brzostowski, A. and Dadej, M. (2003). Total mercury in wild-grown higher mushrooms and underlying soil from Wdzydze Landscape Park, Northern Poland. Food Chemistry, 81(1), 21-26.
  • Fu, Z., Liu, G. and Wang, L. (2020). Assessment of potential human health risk of trace element in wild edible mushroom species collected from Yunnan Province, China. Environmental Science and Pollution Research, 27, 29218-29227.
  • Gadd, G. M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3-49.
  • Ghosh, S., Sharma, A. and Talukder, G. (1992). Zirconium: an abnormal trace element in biology. Biological Trace Element Research, 35, 247-271.
  • Isildak, Ö., Turkekul, I., Elmastas, M. And Tuzen, M. (2004). Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chemistry, 86(4), 547-552.
  • Işiloğlu, M., Merdivan, M. and Yilmaz, F. (2001). Heavy metal contents in some macrofungi collected in the northwestern part of Turkey. Archives of Environmental Contamination and Toxicology, 41, 1-7.
  • Jorhem, L., Åstrand, C., Sundström, B., Baxter, M., Stokes, P., Lewis, J. and Grawé, K. P. (2008). Elements in rice on the Swedish market: Part 2. Chromium, copper, iron, manganese, platinum, rubidium, selenium and zinc. Food Additives and Contaminants, 25(7), 841-850.
  • Kalač, P. and Stašková, I. (1991). Concentrations of lead, cadmium, mercury and copper in mushrooms in the vicinity of a lead smelter. Science of the Total Environment, 105, 109-119.
  • Kalač, P. and Svoboda, L. (2000). A review of trace element concentrations in edible mushrooms. Food Chemistry, 69(3), 273-281.
  • Kokkoris, V., Massas, I., Polemis, E., Koutrotsios, G. and Zervakis, G. I. (2019). Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Science of The Total Environment, 685, 280-296.
  • Koyyalamudi, S. R., Jeong, S. C., Manavalan, S., Vysetti, B. and Pang, G. (2013). Micronutrient mineral content of the fruiting bodies of Australian cultivated Agaricus bisporus white button mushrooms. Journal of Food Composition and Analysis, 31(1), 109-114.
  • Lasota, W., Florczak, J. and Karmańska, A. (1990). Effect of growing conditions on accumulation of some toxic substances in mushrooms: Part I. Studies on Hg, Cd, Pb and Zn absorption by Agaricus bisporus Lange and Pleurotus ostreatus Jacq. Fr. Kumm. Bromatologia i Chemia Toksykologiczna, 23, 95-99.
  • Li, G.S.F. and Chang, S.T. (1982). The nucleic acid content of some edible mushrooms. European Journal f Applied Microbiology and Biotechnology, 15, 237-240.
  • Lossow, K., Schwerdtle, T., and Kipp, A. (2019). Selenium and iodine–essential trace elements for the thyroid. Ernahrungs Umschau, 66, 175-180.
  • Matta, G., and Gjyli, L. (2016). Mercury, lead and arsenic: impact on environment and human health. Journal of Chemical and Pharmaceutical Sciences, 9(2), 718-725.
  • Mehri, A. (2020). Trace elements in human nutrition (II)–an update. International Journal of Preventive Medicine, 11(2), 1-17.
  • Melnyk, L. J., Donohue, M. J., Pham, M. and Donohue, J. (2019). Absorption of strontium by foods prepared in drinking water. Journal of Trace Elements in Medicine and Biology, 53, 22-26.
  • Mleczek, M., Siwulski, M., Mikołajczak, P., Goliński, P., Gąsecka, M., Sobieralski, K., Dawidowicz L. and Szymańczyk, M. (2015). Bioaccumulation of elements in three selected mushroom species from southwest Poland. Journal of Environmental Science and Health, Part B, 50(3), 207-216.
  • Mleczek, M., Budka, A., Siwulski, M., Mleczek, P., Budzyńska, S., Proch, J., Gąsecka, M., Niedzielski, P. and Rzymski, P. (2021). A comparison of toxic and essential elements in edible wild and cultivated mushroom species. European Food Research and Technology, 247, 1249-1262.
  • Mushtaq, W., Hayri, B., Akata, I. and Sevindik, M. (2020). Antioxidant potential and element contents of wild edible mushroom Suillus granulatus. KSU J. Agric Nat, 23(3), 592-595.
  • Nielsen, F. H. (1998). Ultratrace elements in nutrition: current knowledge and speculation. The Journal of Trace Elements in Experimental Medicine: The Official Publication of the International Society for Trace Element Research in Humans, 11(2‐3), 251-274.
  • Nikkarinen, M. and Mertanen, E. (2004). Impact of geological origin on trace element composition of edible mushrooms. Journal of Food Composition and Analysis, 17(3-4), 301-310.
  • Ouzouni, P. K., Petridis, D., Koller, W. D. and Riganakos, K. A. (2009). Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chemistry, 115(4), 1575-1580.
  • Pandey, G. and Madhuri, S. (2014). Heavy metals causing toxicity in animals and fishes. Research Journal of Animal, Veterinary and Fishery Sciences, 2(2), 17-23.
  • Rácz, L., Papp, L. and Fodor, P. (1995). Migration analysis of elements from compost and casing material to the fruit bodies in cultivated mushrooms (Agaricus bisporus). Acta alimentaria (Budapest), 24(2), 161-166.
  • Sanglimsuwan, S., Yoshida, N., Morinaga, T. and Murooka, Y. (1993). Resistance to and uptake of heavy metals in mushrooms. Journal of Fermentation and Bioengineering, 75(2), 112-114.
  • Sarikurkcu, C., Yildiz, D., Akata, I. and Tepe, B. (2021). Evaluation of the metal concentrations of wild mushroom species with their health risk assessments. Environmental Science and Pollution Research, 28, 21437-21454.
  • Sesli, E. and Tüzen, M. (1999). Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey. Food Chemistry, 65(4), 453-460.
  • Sevindik, M. (2018). Antioxidant activity of ethanol extract of Daedaleopsis nitida medicinal mushroom from Turkey. Mycopath, 16(2), 47-49.
  • Singh, A. D., Khanna, K., Kour, J., Dhiman, S., Bhardwaj, T., Devi, K., Sharma, N., Kumar, P., Kapoor, N., Sharma, P., Arora, P., Sharma, A. and Bhardwaj, R. (2023). Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere, 137917.
  • Siwulski, M., Mleczek, M., Rzymski, P., Budka, A., Jasińska, A., Niedzielski, P., Kalač, P., Gąsecka, M., Budzyńska, S. and Mikołajczak, P. (2017). Screening the multi-element content of Pleurotus mushroom species using inductively coupled plasma optical emission spectrometer (ICP-OES). Food Analytical Methods, 10, 487-496.
  • Siwulski, M., Budka, A., Rzymski, P., Gąsecka, M., Kalač, P., Budzyńska, S., Magdziak, Z., Niedzielski, P., Mleczek, P. and Mleczek, M. (2020). Worldwide basket survey of multielemental composition of white button mushroom Agaricus bisporus. Chemosphere, 239, 124718.
  • Turfan, N., Karadeniz, M., and Ünal, S. (2016). Comparison of some chemical contents of Ganoderma lucidum (Curtis) P. Karst collected from nature and cultured on orange stump. Turkish Journal Of Agriculture-Food Science And Technology, 4(3), 158-162.
  • Tüzen, M., Özdemir, M. and Demirbaş, A. (1998). Study of heavy metals in some cultivated and uncultivated mushrooms of Turkish origin. Food Chemistry, 63(2), 247-251.
  • Wu, S., Bie, C., Su, H., Gao, Y. and Sun, X. (2022). The effective separation of yttrium and other heavy rare earth elements with salicylic acid derivatives. Minerals Engineering, 178, 107396.
  • Yamaç, M., Yıldız, D., Sarıkürkcü, C., Celikkollu, M. and Solak, M. H. (2007). Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chemistry, 103(2), 263-267.
There are 46 citations in total.

Details

Primary Language English
Subjects Nonwood Forest Products Industry
Journal Section Research Articles
Authors

Sibel Yıldız 0000-0001-8448-4628

Hasan Hüseyin Doğan 0000-0001-8859-0188

Ayşenur Gürgen 0000-0002-2263-7323

Uğur Çevik 0000-0002-7513-5175

Project Number FBA-2017-5579
Early Pub Date February 15, 2024
Publication Date February 29, 2024
Submission Date October 27, 2023
Acceptance Date February 15, 2024
Published in Issue Year 2024 Volume: 26 Issue: 1

Cite

APA Yıldız, S., Doğan, H. H., Gürgen, A., Çevik, U. (2024). Elemental Composition of A Cultivated Mushroom (Agaricus bisporus) and Some Wild Mushroom Species. Bartın Orman Fakültesi Dergisi, 26(1), 55-63. https://doi.org/10.24011/barofd.1380972


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com