Research Article
BibTex RIS Cite

Perovskit tipi proton ileten bir malzemenin sentezi, karakterizasyonu ve iletkenlik ölçümü

Year 2017, Volume: 19 Issue: 3, 58 - 63, 07.12.2017
https://doi.org/10.25092/baunfbed.363763

Abstract

ABO3
perovskite ailesinden olan seramik esaslı malzemeler, gaz ortamına bağlı olarak
orta sıcaklıklarda (500-800°C) hem proton hem de oksijen iyonu iletkenliğini
göstermektedir. Bu tür malzemeler çok yönlü taşıma özelliklerinden ve bunların
orta sıcaklık katı oksit yakıt pillerinde elektrolit olarak kullanılma
potansiyellerinden dolayı ilgi çekmiştir. 
Bu çalışmada, katıhal reaksiyon yöntemi kullanılarak bir perovskit tip
proton iletken malzeme sentezlenmiştir.  X-ışını
difraksiyonu (XRD) ve X-ışını enerji dağılımı spektrometresi (EDXS)
karakterizasyon teknikleri kullanılarak toz formundaki malzemenin
kristalografik yapısı, faz saflığı ve element bileşimi belirlenmiştir.  Sonuçlar Uluslararası Kırınım Merkezi
Verileri (ICDD) veri tabanı ile karşılaştırılmış olup, standart perovskite
yapısı ile mükemmel uyum göstermiştir. 
Yüzey alanı ölçümü Brunauer-Emmett-Teller (BET) yöntemi kullanılarak
gerçekleştirildi.  İletkenlik ölçümü,
farklı gaz ortamlarında AC empedansı kullanılarak orta sıcaklık aralığında
gerçekleştirildi.



 

References

  • References Medvedev, D., Murashkina, A., Pikalova, E., Demin, A., Podias, A. and Tsiakaras, P., BaCeO3: Materials development, properties and application, Progress in Materials Science, 60, 72-129, (2014).
  • Laguna-Bercero, M.A., Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, Journal of Power Sources, 203, 4-16, (2012).
  • Rayment, C. and Sherwin, S., Introduction to fuel cell technology, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, U.S.A., (May 2003).
  • Kilner, J.A. and Burriel, M., Materials for intermediate temperature solid oxide fuel cells, Annual Review of Materials Research, 44, 365-393, (2014)
  • Ormerod, R.M., Solid oxide fuel cells, Chemical Society Reviews, 32, 17-28, (2003).
  • Mahato, N., Banerjee, A., Gupta, A., Omar, S. and Balani, K., Progress in material selection for solid oxide fuel cell technology: A review, Progress in Materials Science, 72, 141-337, (2015).
  • Iwahara, H., Esaka, T., Uchida, H. and Maeda, N., Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production, Solid State Ionics, 3–4, 359-363, (1981).
  • Liu, Y., Tan, X. and Li, K., Mixed conducting ceramics for catalytic membrane processing, Catalysis Reviews, 48, 145-198, (2006).
  • Fabbri, E., Pergolesi, D. and Traversa, E., Materials challenges toward proton-conducting oxide fuel cells: A critical review, Chemical Society Reviews, 39, 4355-4369, (2010).
  • Norby, T., Protonic defects in oxides and their possible role in high temperature oxidation, Journal of Physics IV France, 03, C9-106, (1993).
  • Bonanos, N., Ellis, B., Knight, K.S. and Mahmood, M.N., Ionic conductivity of gadolinium-doped barium cerate perovskites, Solid State Ionics, 35, 179-188, (1989).
  • Bonanos, N., Knight, K.S. and Ellis, B., Perovskite solid electrolytes: Structure, transport properties and fuel cell applications, Solid State Ionics, 79, 161-170, (1995).
  • Babilo, P., Uda, T. and Haile, S.M., Processing of yttrium-doped barium zirconate for high proton conductivity, Journal of Materials Research, 22, 1322-1330, (2007).
  • Bonanos, N. and Willy Poulsen, F., Considerations of defect equilibria in high temperature proton conducting cerates, Journal of Materials Chemistry, 9, 431-434, (1999).
  • Takeuchi, K., Loong, C.K., Richardson Jr, J.W., Guan, J., Dorris, S.E. and Balachandran, U., The crystal structures and phase transitions in Y-doped BaCeO3: Their dependence on Y concentration and hydrogen doping, Solid State Ionics, 138, 63-77, (2000).
  • Tauer, T., O'hayre, R. and Medlin, J.W., A theoretical study of the influence of dopant concentration on the hydration properties of yttrium doped barium cerate, Solid State Ionics, 204–205, 27-34, (2011).
  • Sawant, P., Varma, S., Wani, B.N. and Bharadwaj, S.R., Influence of synthesis route on morphology and conduction behavior of BaCe0.8Y0.2O3−δ, Journal of Thermal Analysis and Calorimetry, 107, 189-195, (2012).
  • Tong, J., Clark, D., Bernau, L., Subramaniyan, A. and O'hayre, R., Proton-conducting yttrium doped barium cerate ceramics synthesized by a cost effective solid state reactive sintering method, Solid State Ionics, 181, 1486-1498, (2010).
  • Nikodemski, S., Tong, J. and O'hayre, R., Solid state reactive sintering mechanism for proton conducting ceramics, Solid State Ionics, 253, 201-210, (2013).
  • Subramaniyan, A., Tong, J., O'hayre, R.P. and Sammes, N.M., Sintering studies on 20 mol% yttrium doped barium cerate, Journal of the American Ceramic Society, 94, 1800-1804, (2011).
  • Coors, W.G. and Readey, D.W., Proton conductivity measurements in yttrium barium cerate by impedance spectroscopy, Journal of the American Ceramic Society, 85, 2637-2640, (2002).
  • Malavasi, L., Ritter, C. and Chiodelli, G., Correlation between thermal properties, electrical conductivity, and crystal structure in the BaCe0.8Y0.2O2.9 proton conductor, Chemistry of Materials, 20, 2343-2351, (2008).
  • Xia, C., Cai, Y., Wang, B., Afzal, M., Zhang, W., Soltaninazarlou, A. and Zhu, B., Strategy towards cost effective low temperature solid oxide fuel cells: A mixed conductive membrane comprised of natural minerals and perovskite oxide, Journal of Power Sources, 342, 779-786, (2017).
  • W. Grover Coors and Swartzlander, R., Partial conductivity measurements in BaCe0.9Y0.1O3−δ by impedance spectroscopy, Proceedings of the 26th Risø International Symposium on Materials Science Solid State Electrochemistry, 185-196, (2005).
  • Iwahara, H., Technological challenges in the application of proton conducting ceramics, Solid State Ionics, 77, 289-298, (1995).
  • Iwahara, H., Mori, T. and Hibino, T., Electrochemical studies on ionic conduction in Ca-doped BaCeO3, Solid State Ionics, 79, 177-182, (1995).
  • Fabbri, E., Pergolesi, D., D’epifanio, A., Di Bartolomeo, E., Balestrino, G., Licocciaa S. and Traversa, E., Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs), Energy & Environmental Science, 358, 355-359, (2008).
  • Tomita, A., Hibino, T., Suzuki, M. and Sano, M., Proton conduction at the surface of Y-doped BaCeO3 and its application to an air/fuel sensor, Journal of Materials Science, 39, 2493-2497, (2004).

Fabrication, characterisation and conductivity measurement of a perovskite-type proton conductor

Year 2017, Volume: 19 Issue: 3, 58 - 63, 07.12.2017
https://doi.org/10.25092/baunfbed.363763

Abstract

Ceramic
based materials from the ABO3 perovskite family, show both proton
and oxide ion conductivity at intermediate temperatures depending on the
gaseous environment. Due to these multi-species transport features of them and
their potential to be utilised as an electrolyte in solid oxide fuel cells
operating at intermediate temperature, there has been lot of research focused
on them and their properties. In this study, a perovskite type proton conductor
was synthesised by using solid state reaction method. X-ray diffraction (XRD)
and Energy dispersive X-ray spectroscopy (EDXS) characterisation techniques
were utilised to determine crystal structure, phase purity and the elemental
materials composition in powder form. The results were compared with International
Centre for Diffraction Data (ICDD) database and displayed excellent match with
standard perovskite structure. Also, the surface area measurement was performed
via utilising the Brunauer-Emmett-Teller (BET) method. The conductivity
measurement was carried out at the intermediate temperature (500-800°C) using
AC impedance at different atmospheres.

References

  • References Medvedev, D., Murashkina, A., Pikalova, E., Demin, A., Podias, A. and Tsiakaras, P., BaCeO3: Materials development, properties and application, Progress in Materials Science, 60, 72-129, (2014).
  • Laguna-Bercero, M.A., Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, Journal of Power Sources, 203, 4-16, (2012).
  • Rayment, C. and Sherwin, S., Introduction to fuel cell technology, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, U.S.A., (May 2003).
  • Kilner, J.A. and Burriel, M., Materials for intermediate temperature solid oxide fuel cells, Annual Review of Materials Research, 44, 365-393, (2014)
  • Ormerod, R.M., Solid oxide fuel cells, Chemical Society Reviews, 32, 17-28, (2003).
  • Mahato, N., Banerjee, A., Gupta, A., Omar, S. and Balani, K., Progress in material selection for solid oxide fuel cell technology: A review, Progress in Materials Science, 72, 141-337, (2015).
  • Iwahara, H., Esaka, T., Uchida, H. and Maeda, N., Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production, Solid State Ionics, 3–4, 359-363, (1981).
  • Liu, Y., Tan, X. and Li, K., Mixed conducting ceramics for catalytic membrane processing, Catalysis Reviews, 48, 145-198, (2006).
  • Fabbri, E., Pergolesi, D. and Traversa, E., Materials challenges toward proton-conducting oxide fuel cells: A critical review, Chemical Society Reviews, 39, 4355-4369, (2010).
  • Norby, T., Protonic defects in oxides and their possible role in high temperature oxidation, Journal of Physics IV France, 03, C9-106, (1993).
  • Bonanos, N., Ellis, B., Knight, K.S. and Mahmood, M.N., Ionic conductivity of gadolinium-doped barium cerate perovskites, Solid State Ionics, 35, 179-188, (1989).
  • Bonanos, N., Knight, K.S. and Ellis, B., Perovskite solid electrolytes: Structure, transport properties and fuel cell applications, Solid State Ionics, 79, 161-170, (1995).
  • Babilo, P., Uda, T. and Haile, S.M., Processing of yttrium-doped barium zirconate for high proton conductivity, Journal of Materials Research, 22, 1322-1330, (2007).
  • Bonanos, N. and Willy Poulsen, F., Considerations of defect equilibria in high temperature proton conducting cerates, Journal of Materials Chemistry, 9, 431-434, (1999).
  • Takeuchi, K., Loong, C.K., Richardson Jr, J.W., Guan, J., Dorris, S.E. and Balachandran, U., The crystal structures and phase transitions in Y-doped BaCeO3: Their dependence on Y concentration and hydrogen doping, Solid State Ionics, 138, 63-77, (2000).
  • Tauer, T., O'hayre, R. and Medlin, J.W., A theoretical study of the influence of dopant concentration on the hydration properties of yttrium doped barium cerate, Solid State Ionics, 204–205, 27-34, (2011).
  • Sawant, P., Varma, S., Wani, B.N. and Bharadwaj, S.R., Influence of synthesis route on morphology and conduction behavior of BaCe0.8Y0.2O3−δ, Journal of Thermal Analysis and Calorimetry, 107, 189-195, (2012).
  • Tong, J., Clark, D., Bernau, L., Subramaniyan, A. and O'hayre, R., Proton-conducting yttrium doped barium cerate ceramics synthesized by a cost effective solid state reactive sintering method, Solid State Ionics, 181, 1486-1498, (2010).
  • Nikodemski, S., Tong, J. and O'hayre, R., Solid state reactive sintering mechanism for proton conducting ceramics, Solid State Ionics, 253, 201-210, (2013).
  • Subramaniyan, A., Tong, J., O'hayre, R.P. and Sammes, N.M., Sintering studies on 20 mol% yttrium doped barium cerate, Journal of the American Ceramic Society, 94, 1800-1804, (2011).
  • Coors, W.G. and Readey, D.W., Proton conductivity measurements in yttrium barium cerate by impedance spectroscopy, Journal of the American Ceramic Society, 85, 2637-2640, (2002).
  • Malavasi, L., Ritter, C. and Chiodelli, G., Correlation between thermal properties, electrical conductivity, and crystal structure in the BaCe0.8Y0.2O2.9 proton conductor, Chemistry of Materials, 20, 2343-2351, (2008).
  • Xia, C., Cai, Y., Wang, B., Afzal, M., Zhang, W., Soltaninazarlou, A. and Zhu, B., Strategy towards cost effective low temperature solid oxide fuel cells: A mixed conductive membrane comprised of natural minerals and perovskite oxide, Journal of Power Sources, 342, 779-786, (2017).
  • W. Grover Coors and Swartzlander, R., Partial conductivity measurements in BaCe0.9Y0.1O3−δ by impedance spectroscopy, Proceedings of the 26th Risø International Symposium on Materials Science Solid State Electrochemistry, 185-196, (2005).
  • Iwahara, H., Technological challenges in the application of proton conducting ceramics, Solid State Ionics, 77, 289-298, (1995).
  • Iwahara, H., Mori, T. and Hibino, T., Electrochemical studies on ionic conduction in Ca-doped BaCeO3, Solid State Ionics, 79, 177-182, (1995).
  • Fabbri, E., Pergolesi, D., D’epifanio, A., Di Bartolomeo, E., Balestrino, G., Licocciaa S. and Traversa, E., Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs), Energy & Environmental Science, 358, 355-359, (2008).
  • Tomita, A., Hibino, T., Suzuki, M. and Sano, M., Proton conduction at the surface of Y-doped BaCeO3 and its application to an air/fuel sensor, Journal of Materials Science, 39, 2493-2497, (2004).
There are 28 citations in total.

Details

Journal Section Research Articles
Authors

Selgin Al

Publication Date December 7, 2017
Submission Date September 12, 2017
Published in Issue Year 2017 Volume: 19 Issue: 3

Cite

APA Al, S. (2017). Perovskit tipi proton ileten bir malzemenin sentezi, karakterizasyonu ve iletkenlik ölçümü. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(3), 58-63. https://doi.org/10.25092/baunfbed.363763
AMA Al S. Perovskit tipi proton ileten bir malzemenin sentezi, karakterizasyonu ve iletkenlik ölçümü. BAUN Fen. Bil. Enst. Dergisi. December 2017;19(3):58-63. doi:10.25092/baunfbed.363763
Chicago Al, Selgin. “Perovskit Tipi Proton Ileten Bir Malzemenin Sentezi, Karakterizasyonu Ve Iletkenlik ölçümü”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19, no. 3 (December 2017): 58-63. https://doi.org/10.25092/baunfbed.363763.
EndNote Al S (December 1, 2017) Perovskit tipi proton ileten bir malzemenin sentezi, karakterizasyonu ve iletkenlik ölçümü. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19 3 58–63.
IEEE S. Al, “Perovskit tipi proton ileten bir malzemenin sentezi, karakterizasyonu ve iletkenlik ölçümü”, BAUN Fen. Bil. Enst. Dergisi, vol. 19, no. 3, pp. 58–63, 2017, doi: 10.25092/baunfbed.363763.
ISNAD Al, Selgin. “Perovskit Tipi Proton Ileten Bir Malzemenin Sentezi, Karakterizasyonu Ve Iletkenlik ölçümü”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19/3 (December 2017), 58-63. https://doi.org/10.25092/baunfbed.363763.
JAMA Al S. Perovskit tipi proton ileten bir malzemenin sentezi, karakterizasyonu ve iletkenlik ölçümü. BAUN Fen. Bil. Enst. Dergisi. 2017;19:58–63.
MLA Al, Selgin. “Perovskit Tipi Proton Ileten Bir Malzemenin Sentezi, Karakterizasyonu Ve Iletkenlik ölçümü”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 19, no. 3, 2017, pp. 58-63, doi:10.25092/baunfbed.363763.
Vancouver Al S. Perovskit tipi proton ileten bir malzemenin sentezi, karakterizasyonu ve iletkenlik ölçümü. BAUN Fen. Bil. Enst. Dergisi. 2017;19(3):58-63.