Research Article
BibTex RIS Cite

Mathematical analysis of the possibilistic mean – variance model

Year 2020, Volume: 22 Issue: 1, 80 - 91, 10.01.2020
https://doi.org/10.25092/baunfbed.677022

Abstract

The possibilistic mean – variance (MV) model enables the practitioners to model the imprecise probability and integrate their subjective judgements into the portfolio selection problem. Thus, it is a considerable alternative of the Markowitz’s traditional MV model. In this study, we analyze this model mathematically under the assumption that the possibility distributions of asset returns are given with the triangular fuzzy numbers. Within this scope, the portfolios which maximize the utility or performance are derived analytically. Furthermore, we illustrate the structure of its efficient frontier with examples.

References

  • Markowitz, H., Portfolio selection, The Journal of Finance, 7, 1, 77-91, (1952).
  • Goldfarb, D. ve Iyengar, G., Robust portfolio selection problems, Mathematics of Operations Research, 28, 1, 1-38, (2003).
  • Breuer, T., Providing against the worst: risk capital for worst case scenarios, Managerial Finance, 32, 9, 716–730, (2006).
  • Garlappi, L., Uppal, R. ve Wang, T., Portfolio selection with parameter and model uncertainty: A multi-prior approach, The Review of Financial Studies, 20, 1, 41-81, (2006).
  • Tütüncü, R. H. ve Koenig, M., Robust asset allocation, Annals of Operations Research, 132, 1-4, 157-187, (2004).
  • Huang, D., Zhu, S., Fabozzi, F. J. ve Fukushima, M., Portfolio selection under distributional uncertainty: a relative robust CVaR approach, European Journal of Operational Research, 203, 1, 185-194, (2010).
  • Bhattacharyya, R., Kar, S. ve Majumder, D. D., Fuzzy mean–variance–skewness portfolio selection models by interval analysis, Computers & Mathematics with Applications, 61, 1, 126-137, (2011).
  • Duran, A. ve Bommarito, M. J., A profitable trading and risk management strategy despite transaction costs, Quantitative Finance, 11, 6, 829-848, (2011).
  • Jorion, P., Bayes-Stein estimation for portfolio analysis, The Journal of Financial and Quantitative Analysis, 21, 3, 279-292, (1986).
  • Carlsson, C., Fullér, R. ve Majlender, P., A possibilistic approach to selecting portfolios with highest utility score, Fuzzy Sets and Systems, 131, 1, 13-21, (2002).
  • Taş, O., Kahraman, C. ve Güran, C. B., A Scenario Based Linear Fuzzy Approach in Portfolio Selection Problem: Application in the Istanbul Stock Exchange, Journal of Multiple-Valued Logic & Soft Computing, 26, 3-5, 269-294, (2016).
  • Zhang, W. G., Zhang, X. L. ve Xiao, W. L., Portfolio selection under possibilistic mean–variance utility and a SMO algorithm, European Journal of Operational Research, 197, 2, 693-700, (2009).
  • Dubois, D., Possibility theory and statistical reasoning, Computational Statistics & Data Analysis, 51, 1, 47-69, (2006).
  • Klir, G. ve Yuan, B., Fuzzy sets and fuzzy logic, Prentice Hall, (1995).
  • Zimmermann, H. J., Fuzzy set theory and its applications, Springer, (2001).
  • Roman-Flores, H., Barros, L. C. ve Bassanezi, R. C., A note on Zadeh's extensions, Fuzzy Sets and Systems, 117, 3, 327-331, (2001).
  • Carlsson, C. ve Fuller, R., On possibilistic mean value and variance of fuzzy numbers, Fuzzy Sets and Systems, 122, 315-326, (2001).
  • Deb, K., Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, (2001).
  • Bajalinov, E. B., Linear-fractional programming theory, methods, applications and software, Springer, (2013).
  • Bykadorov, I. A., On quasiconvexity in fractional programming in Komlosi, S., Rapcsak, T. ve Schaible, S., Generalized Convexity, Springer, (1994).
  • Biswas, A., Verma, S., ve Ojha, D. B., Optimality and Convexity Theorems for Linear Fractional Programming Problem, International Journal of Computational and Applied Mathematics, 12, 3, 911-916, (2017).

Olabilirlik ortalama – varyans modelinin matematiksel analizi

Year 2020, Volume: 22 Issue: 1, 80 - 91, 10.01.2020
https://doi.org/10.25092/baunfbed.677022

Abstract

Olabilirlik ortalama – varyans (OV) modeli, kesin olmayan olasılığın modellenebilmesine ve kişisel yargıların ve beklentilerin portföy seçimi problemine entegre edilebilmesine imkan verir. Bu nedenle Markovitz’in geleneksel OV modelinin dikkate değer bir alternatifidir. Bu çalışmada varlık getirilerinin olabilirlik dağılımlarının üçgensel bulanık sayılar ile verildiği varsayımı altında bu modelin matematiksel analizi yapılmıştır. Bu kapsamda performansı ya da faydayı maksimum yapan portföyler analitik olarak elde edilmiştir. Ayrıca bu modelin verdiği etkin sınırın yapısı örnekler ile açıklanmıştır.

References

  • Markowitz, H., Portfolio selection, The Journal of Finance, 7, 1, 77-91, (1952).
  • Goldfarb, D. ve Iyengar, G., Robust portfolio selection problems, Mathematics of Operations Research, 28, 1, 1-38, (2003).
  • Breuer, T., Providing against the worst: risk capital for worst case scenarios, Managerial Finance, 32, 9, 716–730, (2006).
  • Garlappi, L., Uppal, R. ve Wang, T., Portfolio selection with parameter and model uncertainty: A multi-prior approach, The Review of Financial Studies, 20, 1, 41-81, (2006).
  • Tütüncü, R. H. ve Koenig, M., Robust asset allocation, Annals of Operations Research, 132, 1-4, 157-187, (2004).
  • Huang, D., Zhu, S., Fabozzi, F. J. ve Fukushima, M., Portfolio selection under distributional uncertainty: a relative robust CVaR approach, European Journal of Operational Research, 203, 1, 185-194, (2010).
  • Bhattacharyya, R., Kar, S. ve Majumder, D. D., Fuzzy mean–variance–skewness portfolio selection models by interval analysis, Computers & Mathematics with Applications, 61, 1, 126-137, (2011).
  • Duran, A. ve Bommarito, M. J., A profitable trading and risk management strategy despite transaction costs, Quantitative Finance, 11, 6, 829-848, (2011).
  • Jorion, P., Bayes-Stein estimation for portfolio analysis, The Journal of Financial and Quantitative Analysis, 21, 3, 279-292, (1986).
  • Carlsson, C., Fullér, R. ve Majlender, P., A possibilistic approach to selecting portfolios with highest utility score, Fuzzy Sets and Systems, 131, 1, 13-21, (2002).
  • Taş, O., Kahraman, C. ve Güran, C. B., A Scenario Based Linear Fuzzy Approach in Portfolio Selection Problem: Application in the Istanbul Stock Exchange, Journal of Multiple-Valued Logic & Soft Computing, 26, 3-5, 269-294, (2016).
  • Zhang, W. G., Zhang, X. L. ve Xiao, W. L., Portfolio selection under possibilistic mean–variance utility and a SMO algorithm, European Journal of Operational Research, 197, 2, 693-700, (2009).
  • Dubois, D., Possibility theory and statistical reasoning, Computational Statistics & Data Analysis, 51, 1, 47-69, (2006).
  • Klir, G. ve Yuan, B., Fuzzy sets and fuzzy logic, Prentice Hall, (1995).
  • Zimmermann, H. J., Fuzzy set theory and its applications, Springer, (2001).
  • Roman-Flores, H., Barros, L. C. ve Bassanezi, R. C., A note on Zadeh's extensions, Fuzzy Sets and Systems, 117, 3, 327-331, (2001).
  • Carlsson, C. ve Fuller, R., On possibilistic mean value and variance of fuzzy numbers, Fuzzy Sets and Systems, 122, 315-326, (2001).
  • Deb, K., Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, (2001).
  • Bajalinov, E. B., Linear-fractional programming theory, methods, applications and software, Springer, (2013).
  • Bykadorov, I. A., On quasiconvexity in fractional programming in Komlosi, S., Rapcsak, T. ve Schaible, S., Generalized Convexity, Springer, (1994).
  • Biswas, A., Verma, S., ve Ojha, D. B., Optimality and Convexity Theorems for Linear Fractional Programming Problem, International Journal of Computational and Applied Mathematics, 12, 3, 911-916, (2017).
There are 21 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Furkan Göktaş 0000-0001-9291-3912

Ahmet Duran 0000-0001-9835-0006

Publication Date January 10, 2020
Submission Date July 26, 2019
Published in Issue Year 2020 Volume: 22 Issue: 1

Cite

APA Göktaş, F., & Duran, A. (2020). Olabilirlik ortalama – varyans modelinin matematiksel analizi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 80-91. https://doi.org/10.25092/baunfbed.677022
AMA Göktaş F, Duran A. Olabilirlik ortalama – varyans modelinin matematiksel analizi. BAUN Fen. Bil. Enst. Dergisi. January 2020;22(1):80-91. doi:10.25092/baunfbed.677022
Chicago Göktaş, Furkan, and Ahmet Duran. “Olabilirlik Ortalama – Varyans Modelinin Matematiksel Analizi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 1 (January 2020): 80-91. https://doi.org/10.25092/baunfbed.677022.
EndNote Göktaş F, Duran A (January 1, 2020) Olabilirlik ortalama – varyans modelinin matematiksel analizi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 1 80–91.
IEEE F. Göktaş and A. Duran, “Olabilirlik ortalama – varyans modelinin matematiksel analizi”, BAUN Fen. Bil. Enst. Dergisi, vol. 22, no. 1, pp. 80–91, 2020, doi: 10.25092/baunfbed.677022.
ISNAD Göktaş, Furkan - Duran, Ahmet. “Olabilirlik Ortalama – Varyans Modelinin Matematiksel Analizi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/1 (January 2020), 80-91. https://doi.org/10.25092/baunfbed.677022.
JAMA Göktaş F, Duran A. Olabilirlik ortalama – varyans modelinin matematiksel analizi. BAUN Fen. Bil. Enst. Dergisi. 2020;22:80–91.
MLA Göktaş, Furkan and Ahmet Duran. “Olabilirlik Ortalama – Varyans Modelinin Matematiksel Analizi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 1, 2020, pp. 80-91, doi:10.25092/baunfbed.677022.
Vancouver Göktaş F, Duran A. Olabilirlik ortalama – varyans modelinin matematiksel analizi. BAUN Fen. Bil. Enst. Dergisi. 2020;22(1):80-91.