Research Article
BibTex RIS Cite

Düşük hızlı ve küçük güçlü rüzgar türbinleri için kalıcı mıknatıslı senkron generatör tasarımı

Year 2021, Volume: 23 Issue: 2, 434 - 454, 04.07.2021
https://doi.org/10.25092/baunfbed.893418

Abstract

Bu makalede, küçük güçlü düşük hızlı rüzgar türbinleri için radyal akılı kalıcı mıknatıslı senkron generatörlerin (KMSG’lerin) tasarımı ile Ansys Maxwell yazılım ortamında modellenmesi ve performans analizi üzerine örnek bir çalışma sunulmuştur. Bu örnek çalışmada, öncelikle analitik ifadeler kullanılarak; hedeflenen anma değerlerine sahip bir KMSG tasarımı yapılmıştır. Devamında, Ansys Maxwell yazılım ortamında iki boyutlu modelleme yaklaşımıyla, tasarımın, yüklenme oranı değişimine bağlı olarak gerilim etkin değeri, gerilim toplam harmonik bozulma değeri, akım etkin değeri ve verim performans parametrelerinin değişimi, ayrıca milin dönme hızının değişimine bağlı olarak bu dört performans parametresinin yanı sıra üretilen azami aktif güç değerinin değişimi analiz edilmiştir.

Supporting Institution

İŞBİR Elektrik San. A.Ş. Ar-Ge Birimi

Thanks

Bu çalışma, İŞBİR Elektrik San. A.Ş. Ar-Ge biriminde gerçekleştirilmiştir.

References

  • Brent, A. C. ve Kruger, W. J., Systems analyses and the sustainable transfer of renewable energy technologies: A focus on remote areas of Africa, Renewable Energy, 34(7), 1774-1781, (2009).
  • Chauhan, A. ve Saini, R. P., Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India, Energy, 94, 138-156, (2016).
  • Boute, A., Off-grid renewable energy in remote Arctic areas: An analysis of the Russian Far East, Renewable and Sustainable Energy Reviews, 59, 1029-1037, (2016).
  • Izadyar, N., Ong, H. C., Chong, W. T. ve Leong, K. Y., Resource assessment of the renewable energy potential for a remote area: A review, Renewable and Sustainable Energy Reviews, 62, 908-923, (2016).
  • Shukla, R. D. ve Tripathi, R. K., Isolated wind power supply system using double-fed induction generator for remote areas, Energy Conversion and Management, 96, 473-489, (2015).
  • Nafeh, E. S. A., Design and economic analysis of a stand-alone PV system to electrify a remote area household in Egypt, The Open Renewable Energy Journal, 2, 33-37, (2009).
  • Ranjitkar, G., Huang, J. ve Tung, T., Application of micro-hydropower technology for remote regions, 2006 IEEE EIC Climate Change Conference, IEEE, 1-10, (2006).
  • Bekele, G. ve Tadesse, G., Feasibility study of small hydro/PV/wind hybrid system for off-grid rural electrification in Ethiopia, Applied Energy, 97, 5-15, (2012).
  • Khatib, T., Mohamed, A. ve Sopian, K., Optimization of a PV/wind micro-grid for rural housing electrification using a hybrid iterative/genetic algorithm: Case study of Kuala Terengganu, Malaysia, Energy and Buildings, 47, 321-331, (2012).
  • Lal, D. K., Dash, B. B. ve Akella, A. K., Optimization of PV/wind/micro-hydro/ diesel hybrid power system in HOMER for the study area, International Journal on Electrical Engineering and Informatics, 3(3), 307, (2011).
  • Saheb-Koussa, D., Haddadi, M. ve Belhamel, M., Economic and technical study of a hybrid system (wind–photovoltaic–diesel) for rural electrification in Algeria, Applied Energy, 86(7-8), 1024-1030, (2009).
  • Li, H. ve Chen, Z., Overview of different wind generator systems and their comparisons, IET Renewable Power Generation, 2(2), 123-138, (2008).
  • Cheng, M. ve Zhu, Y., The state of the art of wind energy conversion systems and technologies: A review, Energy Conversion and Management, 88, 332-347, (2014).
  • Bhutto, D. K., Ansari, J. A., Bukhari, S. S. H. ve Chachar, F. A., Wind energy conversion systems (WECS) generators: A review, In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies, 1-6, Sukkur, Pakistan, (2019).
  • Bisenieks, L., Vinnikov, D. ve Galkin, I., New converter for interfacing PMSG based small-scale wind turbine with residential power network, In 2011 7th International Conference-Workshop Compatibility and Power Electronics (CPE), IEEE, 354-359, (2011).
  • Madescu, G., Mot, M., Biriescu, M., Greconici, M. ve Koch, C., Low speed PM generator for direct-drive wind applications, In 2011 IEEE EUROCON-International Conference on Computer as a Tool, IEEE, 1-4, (2011).
  • Alam, H. S., Irasari, P. ve Dewi, D. K., Analytical and numerical deflection study on the structure of 10 kW low speed permanent magnet generator, Journal of Mechatronics, Electrical Power, and Vehicular Technology, 3(2), 87-94, (2012).
  • Orlando, N. A., Liserre, M., Mastromauro, R. A. ve Dell'Aquila, A., A Survey of control issues in PMSG-based small wind-turbine Systems, IEEE transactions on Industrial Informatics, 9(3), 1211-1221, (2013).
  • Tazi, K., Abbou, M.F. ve Abdi, F., Performance analysis of micro-grid designs with local PMSG wind turbines, Energy Systems, 1-33, (2019).
  • Chen, A., Nilssen, R. ve Nysveen, A., Performance comparisons among radial-flux, multistage axial-flux, and three-phase transverse-flux PM machines for downhole applications, IEEE Transactions on Industry Applications, 46(2), 779-789, (2010).
  • Ahsanullah, K., Dutta, R. ve Rahman, M. F., Review of PM generator designs for direct-drive wind turbines, In 2012 22nd Australasian Universities Power Engineering Conference (AUPEC), IEEE, 1-6, (2012).
  • Dorrell, D. G., Hsieh, M. F., Popescu, M., Evans, L., Staton, D. A. ve Grout, V., A review of the design issues and techniques for radial-flux brushless surface and internal rare-earth permanent-magnet motors, IEEE Transactions on Industrial Electronics, 58(9), 3741-3757, (2010).
  • Arafat, M. Y., Murshed, M., Hasan, M. M. ve Razzak, M. A., Design aspects and performance analysis of inner and outer rotor permanent magnet alternator for direct driven low-speed wind turbine, In 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), IEEE, 604-609, (2016).
  • Yilmaz, M. ve Krein, P. T., Capabilities of finite element analysis and magnetic equivalent circuits for electrical machine analysis and design, In 2008 IEEE Power Electronics Specialists Conference, IEEE, 4027-4033, (2008).
  • Kim, J. H. ve Sarlioglu, B., Closed-form method for multi-stage axial flux permanent magnet machine: design and analysis, Electric Power Components and Systems, 45(7), 785-797, (2017).
  • Elosegui, I., Martinez-Iturralde, M., Rico, A. G., Florez, J., Echeverría, J. M. ve Fontan, L., Analytical design of synchronous permanent magnet motor/generators, In 2007 IEEE International Symposium on Industrial Electronics,1165-1170, (2007).
  • Amuhaya, L. L. ve Kamper, M. J., Design analysis of a hybrid-PM synchronous generator for wind energy applications, In 2015 International Conference on the Domestic Use of Energy (DUE), IEEE, 163-167, (2015).
  • Faqih, M. R., Sutedjo, S. ve Wahjono, E., Design and fabrication of a radial flux permanent magnet synchronous generator, In 2019 International Electronics Symposium (IES), IEEE, 644-649, (2019).
  • Wang, T. ve Wang, Q., Optimization design of a permanent magnet synchronous generator for a potential energy recovery system, IEEE Transactions on Energy Conversion, 27(4), 856-863, (2012).
  • A. N. S. Y. S. Maxwell, Low frequency electromagnetic field simulation, https://www.ansys.com/products/electronics/ansys-maxwell, (18.05.2020).
  • Pyrhonen, J., Jokinen, T. ve Hrabovcova, V., Design of rotating electrical machines, John Wiley & Sons, (2013).
  • IEEE 519, IEEE recommended practices and requirements for harmonic control in electrical power systems, IEEE Standardı, (2014).

Design of permanent magnet synchronous generator for low speed and small power wind turbines

Year 2021, Volume: 23 Issue: 2, 434 - 454, 04.07.2021
https://doi.org/10.25092/baunfbed.893418

Abstract

In this paper, an exemplary study on the design of radial flux permanent magnet synchronous generators (PMSGs) for small power-low speed wind turbines and its modelling and performance analysis in Ansys Maxwell software is presented. In this exemplary study, firstly, the design is obtained by using analytical expressions. Subsequently, the two-dimensional model of the design is provided in Ansys Maxwell software. Thus, the variation of the voltage effective value, voltage total harmonic distortion value, current effective value and efficiency parameters of the same design depending on the loading ratio, and the variation of these four parameters and maximum output active power depending on the speed are evaluated.

References

  • Brent, A. C. ve Kruger, W. J., Systems analyses and the sustainable transfer of renewable energy technologies: A focus on remote areas of Africa, Renewable Energy, 34(7), 1774-1781, (2009).
  • Chauhan, A. ve Saini, R. P., Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India, Energy, 94, 138-156, (2016).
  • Boute, A., Off-grid renewable energy in remote Arctic areas: An analysis of the Russian Far East, Renewable and Sustainable Energy Reviews, 59, 1029-1037, (2016).
  • Izadyar, N., Ong, H. C., Chong, W. T. ve Leong, K. Y., Resource assessment of the renewable energy potential for a remote area: A review, Renewable and Sustainable Energy Reviews, 62, 908-923, (2016).
  • Shukla, R. D. ve Tripathi, R. K., Isolated wind power supply system using double-fed induction generator for remote areas, Energy Conversion and Management, 96, 473-489, (2015).
  • Nafeh, E. S. A., Design and economic analysis of a stand-alone PV system to electrify a remote area household in Egypt, The Open Renewable Energy Journal, 2, 33-37, (2009).
  • Ranjitkar, G., Huang, J. ve Tung, T., Application of micro-hydropower technology for remote regions, 2006 IEEE EIC Climate Change Conference, IEEE, 1-10, (2006).
  • Bekele, G. ve Tadesse, G., Feasibility study of small hydro/PV/wind hybrid system for off-grid rural electrification in Ethiopia, Applied Energy, 97, 5-15, (2012).
  • Khatib, T., Mohamed, A. ve Sopian, K., Optimization of a PV/wind micro-grid for rural housing electrification using a hybrid iterative/genetic algorithm: Case study of Kuala Terengganu, Malaysia, Energy and Buildings, 47, 321-331, (2012).
  • Lal, D. K., Dash, B. B. ve Akella, A. K., Optimization of PV/wind/micro-hydro/ diesel hybrid power system in HOMER for the study area, International Journal on Electrical Engineering and Informatics, 3(3), 307, (2011).
  • Saheb-Koussa, D., Haddadi, M. ve Belhamel, M., Economic and technical study of a hybrid system (wind–photovoltaic–diesel) for rural electrification in Algeria, Applied Energy, 86(7-8), 1024-1030, (2009).
  • Li, H. ve Chen, Z., Overview of different wind generator systems and their comparisons, IET Renewable Power Generation, 2(2), 123-138, (2008).
  • Cheng, M. ve Zhu, Y., The state of the art of wind energy conversion systems and technologies: A review, Energy Conversion and Management, 88, 332-347, (2014).
  • Bhutto, D. K., Ansari, J. A., Bukhari, S. S. H. ve Chachar, F. A., Wind energy conversion systems (WECS) generators: A review, In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies, 1-6, Sukkur, Pakistan, (2019).
  • Bisenieks, L., Vinnikov, D. ve Galkin, I., New converter for interfacing PMSG based small-scale wind turbine with residential power network, In 2011 7th International Conference-Workshop Compatibility and Power Electronics (CPE), IEEE, 354-359, (2011).
  • Madescu, G., Mot, M., Biriescu, M., Greconici, M. ve Koch, C., Low speed PM generator for direct-drive wind applications, In 2011 IEEE EUROCON-International Conference on Computer as a Tool, IEEE, 1-4, (2011).
  • Alam, H. S., Irasari, P. ve Dewi, D. K., Analytical and numerical deflection study on the structure of 10 kW low speed permanent magnet generator, Journal of Mechatronics, Electrical Power, and Vehicular Technology, 3(2), 87-94, (2012).
  • Orlando, N. A., Liserre, M., Mastromauro, R. A. ve Dell'Aquila, A., A Survey of control issues in PMSG-based small wind-turbine Systems, IEEE transactions on Industrial Informatics, 9(3), 1211-1221, (2013).
  • Tazi, K., Abbou, M.F. ve Abdi, F., Performance analysis of micro-grid designs with local PMSG wind turbines, Energy Systems, 1-33, (2019).
  • Chen, A., Nilssen, R. ve Nysveen, A., Performance comparisons among radial-flux, multistage axial-flux, and three-phase transverse-flux PM machines for downhole applications, IEEE Transactions on Industry Applications, 46(2), 779-789, (2010).
  • Ahsanullah, K., Dutta, R. ve Rahman, M. F., Review of PM generator designs for direct-drive wind turbines, In 2012 22nd Australasian Universities Power Engineering Conference (AUPEC), IEEE, 1-6, (2012).
  • Dorrell, D. G., Hsieh, M. F., Popescu, M., Evans, L., Staton, D. A. ve Grout, V., A review of the design issues and techniques for radial-flux brushless surface and internal rare-earth permanent-magnet motors, IEEE Transactions on Industrial Electronics, 58(9), 3741-3757, (2010).
  • Arafat, M. Y., Murshed, M., Hasan, M. M. ve Razzak, M. A., Design aspects and performance analysis of inner and outer rotor permanent magnet alternator for direct driven low-speed wind turbine, In 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), IEEE, 604-609, (2016).
  • Yilmaz, M. ve Krein, P. T., Capabilities of finite element analysis and magnetic equivalent circuits for electrical machine analysis and design, In 2008 IEEE Power Electronics Specialists Conference, IEEE, 4027-4033, (2008).
  • Kim, J. H. ve Sarlioglu, B., Closed-form method for multi-stage axial flux permanent magnet machine: design and analysis, Electric Power Components and Systems, 45(7), 785-797, (2017).
  • Elosegui, I., Martinez-Iturralde, M., Rico, A. G., Florez, J., Echeverría, J. M. ve Fontan, L., Analytical design of synchronous permanent magnet motor/generators, In 2007 IEEE International Symposium on Industrial Electronics,1165-1170, (2007).
  • Amuhaya, L. L. ve Kamper, M. J., Design analysis of a hybrid-PM synchronous generator for wind energy applications, In 2015 International Conference on the Domestic Use of Energy (DUE), IEEE, 163-167, (2015).
  • Faqih, M. R., Sutedjo, S. ve Wahjono, E., Design and fabrication of a radial flux permanent magnet synchronous generator, In 2019 International Electronics Symposium (IES), IEEE, 644-649, (2019).
  • Wang, T. ve Wang, Q., Optimization design of a permanent magnet synchronous generator for a potential energy recovery system, IEEE Transactions on Energy Conversion, 27(4), 856-863, (2012).
  • A. N. S. Y. S. Maxwell, Low frequency electromagnetic field simulation, https://www.ansys.com/products/electronics/ansys-maxwell, (18.05.2020).
  • Pyrhonen, J., Jokinen, T. ve Hrabovcova, V., Design of rotating electrical machines, John Wiley & Sons, (2013).
  • IEEE 519, IEEE recommended practices and requirements for harmonic control in electrical power systems, IEEE Standardı, (2014).
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Oktay Karakaya 0000-0003-3871-1724

Batın Demircan 0000-0002-0765-458X

Murat Erhan Balcı This is me 0000-0001-8418-8917

Publication Date July 4, 2021
Submission Date July 8, 2020
Published in Issue Year 2021 Volume: 23 Issue: 2

Cite

APA Karakaya, O., Demircan, B., & Balcı, M. E. (2021). Düşük hızlı ve küçük güçlü rüzgar türbinleri için kalıcı mıknatıslı senkron generatör tasarımı. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 434-454. https://doi.org/10.25092/baunfbed.893418
AMA Karakaya O, Demircan B, Balcı ME. Düşük hızlı ve küçük güçlü rüzgar türbinleri için kalıcı mıknatıslı senkron generatör tasarımı. BAUN Fen. Bil. Enst. Dergisi. July 2021;23(2):434-454. doi:10.25092/baunfbed.893418
Chicago Karakaya, Oktay, Batın Demircan, and Murat Erhan Balcı. “Düşük hızlı Ve küçük güçlü rüzgar türbinleri için kalıcı mıknatıslı Senkron generatör tasarımı”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no. 2 (July 2021): 434-54. https://doi.org/10.25092/baunfbed.893418.
EndNote Karakaya O, Demircan B, Balcı ME (July 1, 2021) Düşük hızlı ve küçük güçlü rüzgar türbinleri için kalıcı mıknatıslı senkron generatör tasarımı. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 2 434–454.
IEEE O. Karakaya, B. Demircan, and M. E. Balcı, “Düşük hızlı ve küçük güçlü rüzgar türbinleri için kalıcı mıknatıslı senkron generatör tasarımı”, BAUN Fen. Bil. Enst. Dergisi, vol. 23, no. 2, pp. 434–454, 2021, doi: 10.25092/baunfbed.893418.
ISNAD Karakaya, Oktay et al. “Düşük hızlı Ve küçük güçlü rüzgar türbinleri için kalıcı mıknatıslı Senkron generatör tasarımı”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/2 (July 2021), 434-454. https://doi.org/10.25092/baunfbed.893418.
JAMA Karakaya O, Demircan B, Balcı ME. Düşük hızlı ve küçük güçlü rüzgar türbinleri için kalıcı mıknatıslı senkron generatör tasarımı. BAUN Fen. Bil. Enst. Dergisi. 2021;23:434–454.
MLA Karakaya, Oktay et al. “Düşük hızlı Ve küçük güçlü rüzgar türbinleri için kalıcı mıknatıslı Senkron generatör tasarımı”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, no. 2, 2021, pp. 434-5, doi:10.25092/baunfbed.893418.
Vancouver Karakaya O, Demircan B, Balcı ME. Düşük hızlı ve küçük güçlü rüzgar türbinleri için kalıcı mıknatıslı senkron generatör tasarımı. BAUN Fen. Bil. Enst. Dergisi. 2021;23(2):434-5.