İlk Prensipler Yöntemi ile Ni2TiAl Bileşiğinin Elastik ve Termodinamik Özelliklerinin İncelenmesi
Year 2023,
Volume: 25 Issue: 2, 416 - 425, 07.07.2023
Tahsin Özer
,
Ali İhsan
Abstract
Bu çalışmada Yoğunluk Fonksiyoneli Teorisi (DFT)’ne dayanan Quantum-Espresso yazılımı kullanılarak kübik L21 yapıda Ni2TiAl bileşiğinin yapısal, elastik ve termodinamik özellikleri incelenmiştir. Bileşiğin mekanik kararlı olduğu görüldükten sonra elastik modülü, anizotropisi, Vicker sertliği ve erime sıcaklıkları hesaplanmıştır. Hesaplamalar ve analizler sonucunda bileşiğin 1000K üzeri erime sıcaklığına sahip olmasından dolayı yüksek sıcaklık uygulamaları için aday malzeme olabileceği düşünülmektedir. 10 GPa altı Vicker sertliğine sahip olmasından dolayı yumuşak malzeme sınıfına girmektedir. Anizotropi analizlerinden malzemenin anizotrop olduğu görüldü.
Supporting Institution
Ulusal Yüksek Başarımlı Hesaplama Merkezi’nin (UHeM)
Project Number
1012332022
Thanks
Bu çalışmada kullanılan hesaplama kaynakları Ulusal Yüksek Başarımlı Hesaplama Merkezi’nin (UHeM), #1012332022 # numaralı desteğiyle, sağlanmıştır. Ayrıca yapılan bu çalışma, “Ni2XAl (X=Ni, Zn, Ti, Cu, V, Sc) Bileşiklerinin Yapısal ve Mekanik Özelliklerinin İlk Prensipler Yöntemi ile İncelenmesi” isimli “OKÜBAP-2022-PT1-00x” numaralı proje ile Osmaniye Korkut Ata Üniversitesi BAP Koordinasyon Birimi tarafından desteklenmiştir.
References
- Lin, W., Freeman, A. J., Cohesive properties and electronic structure of Heusler L21-phase compounds Ni2XAl (X=Ti, V, Zr, Nb, Hf, and Ta), Phys. Rev. B, 45, 61–68, (1992).
- Luo, H. vd. Competition of L21 and XA structural ordering in Heusler alloys X2CuAl (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni), J. Alloys Compd., 665, 180–185, (2016).
- Sahariya, J., Ahuja, B. L., Electronic structure of Ni2TiAl: Theoretical aspects and Compton scattering measurement, Phys. B Condens. Matter, 407, 4182–4185, (2012).
- Al, S., Arikan, N., Iyigör, A., Investigations of Structural, Elastic, Electronic and Thermodynamic Properties of X 2 TiAl Alloys, A Computational Study. Zeitschrift für Naturforsch. A, 73, 859–867, (2018).
- Surucu, G., Candan, A., Erkisi, A., Gencer, A., Güllü, H. H., First principles study on the structural, electronic, mechanical and lattice dynamical properties of XRhSb (X = Ti and Zr) paramagnet half-Heusler antimonides, Mater. Res. Express, 6, 106315, (2019).
- Arıkan, N., Özturk, A. İ., Ag2ScAl Bileşiğinin Mekanik ve Termodinamik özelliklerinin Ab İnitio Hesabı, Kadirli Uygulamalı Bilimler Fakültesi Dergisi, 116–126, (2021).
- Wen, Z., Zhao, Y., Hou, H., Wang, B., Han, P., The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X = Sc, Ti, V) under pressure and temperature: A first-principles study, Mater. Des., 114, 398–403, (2017).
- Jung, J., Ghosh, G., Isheim, D., Olson, G. B., Precipitation of Heusler phase (Ni2TiAl) from B2-TiNi in Ni-Ti-Al and Ni-Ti-Al-X (X = Hf, Zr) alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 34 A, 1221–1235, (2003).
- Jung, J., Ghosh, G., Olson, G. B., A comparative study of precipitation behavior of Heusler phase (Ni2TiAl) from B2-TiNi in Ni–Ti–Al and Ni–Ti–Al–X (X=Hf, Pd, Pt, Zr) alloys, Acta Mater., 51, 6341–6357, (2003).
- da Rocha, F. S., Fraga, G. L. F., Brandão, D. E., da Silva, C. M., Gomes, A. A., Specific heat and electronic structure of Heusler compounds Ni2TAl (T=Ti, Zr, Hf, V, Nb, Ta), Phys. B Condens. Matter, 269, 154–162, (1999).
- Sreenivasa Reddy, P. V., Kanchana, V., Ab initio study of Fermi surface and dynamical properties of Ni2XAl (X = Ti, V, Zr, Nb, Hf and Ta), J. Alloys Compd., 616, 527–534, (2014).
- Sreenivasa Reddy, P. V, Kanchana, V., Vaitheeswaran, G., Singh, D. J., Predicted superconductivity of Ni 2 VAl and pressure dependence of superconductivity in Ni 2 NbX (X = Al, Ga and Sn) and Ni 2 VAl, J. Phys. Condens. Matter, 28, 115703, (2016).
- Perdew, J. P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B, 33, 8822–8824, (1986).
- Giannozzi, P. vd. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, (2009).
- Perdew, J. P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77, 3865, (1996).
- Fischer, T. H., Almlof, J., General methods for geometry and wave function optimization, J. Phys. Chem., 96, 9768–9774, (1992).
- Hill, R., The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. Sect. A, 65, 349–354, (1952).
- Pugh, S. F., XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh, Dublin Philos, Mag. J. Sci. 45, 823–843 (1954).
- Chen, X.-Q., Niu, H., Li, D., Li, Y., Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 19, 1275–1281, (2011).
- Yousef, E. S., El-Adawy, A., El-KheshKhany, N., Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system, Solid State Commun., 139, 108–113, (2006).
- Tian, Y., Xu, B., Zhao, Z., Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Met. Hard Mater., 33, 93–106, (2012).
- Özer, T., Investigation of pressure dependence of mechanical properties of SbSI compound in paraelectric phase by Ab Initio method, Comput. Condens. Matter, 28, e00568, (2021).
- Özer, T., Study of first principles on anisotropy and elastic constants of Y3Al2 compound, Chinese J. Phys., 61, 180–189, (2019).
- Surucu, G., Erkisi, A., The First Principles Investigation of Structural, Electronic, Mechanical and Lattice Dynamical Properties of the B and N Doped M2AX Type MAX Phases Ti2AlB0.5C0.5 and Ti2AlN0.5C0.5 Compounds, J. Boron, (2018).
- Ranganathan, S. I., Ostoja-Starzewski, M., Universal Elastic Anisotropy Index. APS, 101, (2008).
- Buessem, D. H., Chung, W. R., Anisotropy in Single-Crystal Refractory Compounds. (Springer US, 1968).
- Nye, J., Physical properties of crystals: their representation by tensors and matrices. (Oxford University Press, 1985).
- Every, A. G., General closed-form expressions for acoustic waves in elastically anisotropic solids, Phys. Rev. B, 22, 1746, (1980).
- Gaillac, R., Pullumbi, P., Coudert, F.-X., ELATE: an open-source online application for analysis and visualization of elastic tensors, J. Phys. Condens. Matter, 28, 275201, (2016).
- Arikan, N., DikiCi Yildiz, G., Yildiz, Y. G., İyigör, A., Electronic, Elastic, Vibrational and Thermodynamic Properties of HfIrX (X = As, Sb and Bi) Compounds: Insights from DFT-Based Computer Simulation., J. Electron. Mater., 49, 3052–3062, (2020).
- Özer, T., Determination of melting temperature. içinde (ed. Demirkaya, H., Canbulat, M., Pulur, A., Eraslan, M. & Direkci, B.) 4 th International Congress on Multidisciplinary Studies, 87–99, (2018).
- Fine, M. E., Brown, L. D., Marcus, H. L., Elastic constants versus melting temperature in metals, Scr. Metall., 18, 951–956, (1984).
- Clarke, D. R., Materials selections guidelines for low thermal conductivity thermal barrier coatings, Surf. Coatings Technol., 163–164, 67–74, (2003).
- Cahill, D. G., Watson, S. K., Pohl, R. O., Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B, 46, 6131, (1992).
- Long, J., Shu, C., Yang, L., Yang, M., Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation, J. Alloys Compd., 644, 638–644, (2015).
- Petit, A. T., Dulong, P. L., Recherches sur quelques points importans de la théorie de la chaleur. içinde Annales de chimie et de physique, 395–413, (1819).
Investigation of Elastic and Thermodynamic Properties of Ni2TiAl Compound by First Principles Method
Year 2023,
Volume: 25 Issue: 2, 416 - 425, 07.07.2023
Tahsin Özer
,
Ali İhsan
Abstract
In this study, structural, elastic and thermodynamic properties of Ni2TiAl compound in cubic L21 structure were investigated by using Quantum-Espresso software based on Density Functional Theory (DFT). After it was seen that the compound was mechanically stable, its elastic modulus, anisotropy, Vicker hardness and melting temperatures were calculated. As a result of calculations and analyzes, it is thought that the compound may be a candidate material for high temperature applications, since it has a melting temperature of over 1000K. Since it has a Vicker hardness of less than 10 GPa, it is in the soft material class. Anisotropy analysis showed that the material was anisotropic
Project Number
1012332022
References
- Lin, W., Freeman, A. J., Cohesive properties and electronic structure of Heusler L21-phase compounds Ni2XAl (X=Ti, V, Zr, Nb, Hf, and Ta), Phys. Rev. B, 45, 61–68, (1992).
- Luo, H. vd. Competition of L21 and XA structural ordering in Heusler alloys X2CuAl (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni), J. Alloys Compd., 665, 180–185, (2016).
- Sahariya, J., Ahuja, B. L., Electronic structure of Ni2TiAl: Theoretical aspects and Compton scattering measurement, Phys. B Condens. Matter, 407, 4182–4185, (2012).
- Al, S., Arikan, N., Iyigör, A., Investigations of Structural, Elastic, Electronic and Thermodynamic Properties of X 2 TiAl Alloys, A Computational Study. Zeitschrift für Naturforsch. A, 73, 859–867, (2018).
- Surucu, G., Candan, A., Erkisi, A., Gencer, A., Güllü, H. H., First principles study on the structural, electronic, mechanical and lattice dynamical properties of XRhSb (X = Ti and Zr) paramagnet half-Heusler antimonides, Mater. Res. Express, 6, 106315, (2019).
- Arıkan, N., Özturk, A. İ., Ag2ScAl Bileşiğinin Mekanik ve Termodinamik özelliklerinin Ab İnitio Hesabı, Kadirli Uygulamalı Bilimler Fakültesi Dergisi, 116–126, (2021).
- Wen, Z., Zhao, Y., Hou, H., Wang, B., Han, P., The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X = Sc, Ti, V) under pressure and temperature: A first-principles study, Mater. Des., 114, 398–403, (2017).
- Jung, J., Ghosh, G., Isheim, D., Olson, G. B., Precipitation of Heusler phase (Ni2TiAl) from B2-TiNi in Ni-Ti-Al and Ni-Ti-Al-X (X = Hf, Zr) alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 34 A, 1221–1235, (2003).
- Jung, J., Ghosh, G., Olson, G. B., A comparative study of precipitation behavior of Heusler phase (Ni2TiAl) from B2-TiNi in Ni–Ti–Al and Ni–Ti–Al–X (X=Hf, Pd, Pt, Zr) alloys, Acta Mater., 51, 6341–6357, (2003).
- da Rocha, F. S., Fraga, G. L. F., Brandão, D. E., da Silva, C. M., Gomes, A. A., Specific heat and electronic structure of Heusler compounds Ni2TAl (T=Ti, Zr, Hf, V, Nb, Ta), Phys. B Condens. Matter, 269, 154–162, (1999).
- Sreenivasa Reddy, P. V., Kanchana, V., Ab initio study of Fermi surface and dynamical properties of Ni2XAl (X = Ti, V, Zr, Nb, Hf and Ta), J. Alloys Compd., 616, 527–534, (2014).
- Sreenivasa Reddy, P. V, Kanchana, V., Vaitheeswaran, G., Singh, D. J., Predicted superconductivity of Ni 2 VAl and pressure dependence of superconductivity in Ni 2 NbX (X = Al, Ga and Sn) and Ni 2 VAl, J. Phys. Condens. Matter, 28, 115703, (2016).
- Perdew, J. P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B, 33, 8822–8824, (1986).
- Giannozzi, P. vd. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, (2009).
- Perdew, J. P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77, 3865, (1996).
- Fischer, T. H., Almlof, J., General methods for geometry and wave function optimization, J. Phys. Chem., 96, 9768–9774, (1992).
- Hill, R., The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. Sect. A, 65, 349–354, (1952).
- Pugh, S. F., XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh, Dublin Philos, Mag. J. Sci. 45, 823–843 (1954).
- Chen, X.-Q., Niu, H., Li, D., Li, Y., Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 19, 1275–1281, (2011).
- Yousef, E. S., El-Adawy, A., El-KheshKhany, N., Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system, Solid State Commun., 139, 108–113, (2006).
- Tian, Y., Xu, B., Zhao, Z., Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Met. Hard Mater., 33, 93–106, (2012).
- Özer, T., Investigation of pressure dependence of mechanical properties of SbSI compound in paraelectric phase by Ab Initio method, Comput. Condens. Matter, 28, e00568, (2021).
- Özer, T., Study of first principles on anisotropy and elastic constants of Y3Al2 compound, Chinese J. Phys., 61, 180–189, (2019).
- Surucu, G., Erkisi, A., The First Principles Investigation of Structural, Electronic, Mechanical and Lattice Dynamical Properties of the B and N Doped M2AX Type MAX Phases Ti2AlB0.5C0.5 and Ti2AlN0.5C0.5 Compounds, J. Boron, (2018).
- Ranganathan, S. I., Ostoja-Starzewski, M., Universal Elastic Anisotropy Index. APS, 101, (2008).
- Buessem, D. H., Chung, W. R., Anisotropy in Single-Crystal Refractory Compounds. (Springer US, 1968).
- Nye, J., Physical properties of crystals: their representation by tensors and matrices. (Oxford University Press, 1985).
- Every, A. G., General closed-form expressions for acoustic waves in elastically anisotropic solids, Phys. Rev. B, 22, 1746, (1980).
- Gaillac, R., Pullumbi, P., Coudert, F.-X., ELATE: an open-source online application for analysis and visualization of elastic tensors, J. Phys. Condens. Matter, 28, 275201, (2016).
- Arikan, N., DikiCi Yildiz, G., Yildiz, Y. G., İyigör, A., Electronic, Elastic, Vibrational and Thermodynamic Properties of HfIrX (X = As, Sb and Bi) Compounds: Insights from DFT-Based Computer Simulation., J. Electron. Mater., 49, 3052–3062, (2020).
- Özer, T., Determination of melting temperature. içinde (ed. Demirkaya, H., Canbulat, M., Pulur, A., Eraslan, M. & Direkci, B.) 4 th International Congress on Multidisciplinary Studies, 87–99, (2018).
- Fine, M. E., Brown, L. D., Marcus, H. L., Elastic constants versus melting temperature in metals, Scr. Metall., 18, 951–956, (1984).
- Clarke, D. R., Materials selections guidelines for low thermal conductivity thermal barrier coatings, Surf. Coatings Technol., 163–164, 67–74, (2003).
- Cahill, D. G., Watson, S. K., Pohl, R. O., Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B, 46, 6131, (1992).
- Long, J., Shu, C., Yang, L., Yang, M., Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation, J. Alloys Compd., 644, 638–644, (2015).
- Petit, A. T., Dulong, P. L., Recherches sur quelques points importans de la théorie de la chaleur. içinde Annales de chimie et de physique, 395–413, (1819).