Research Article
BibTex RIS Cite

Kent içi karayolu ağlarında yedek kapasite ve taşıt emisyonu problemlerinin eş zamanlı çözümü

Year 2024, Volume: 26 Issue: 2, 373 - 392, 15.07.2024
https://doi.org/10.25092/baunfbed.1424447

Abstract

Kent içi karayolu ağlarında oluşan trafik sıkışıklıkları ve bunun beraberinde getirdiği problemler uzun yıllardır araştırmacıların ilgisini çekmiş ve bu konuda birçok çalışma yapılmıştır. Trafik sıkışıklığının azaltılması amacıyla yerel yönetimlerin ilk olarak başvurduğu yöntemler yol genişletme ve kavşak kontrol tipinin değiştirilmesi olmaktadır. Ancak özellikle ışıklı kavşakların büyük çoğunlukta olduğu gelişmekte olan ülkelerde kent içi ulaşım ağlarında ışık sürelerinin optimizasyonu ile ulaşım ağlarında yedek kapasite yaratılabilmektedir. Diğer taraftan yedek kapasite yaratılması ulaşım ağında oluşan taşıt emisyon miktarının artması sonucunu beraberinde getirmekte ve bu durum çevre ve insan sağlığı üzerinde olumsuz etkiler oluşturmaktadır. Bu nedenle ışık sürelerinin optimizasyonu ile yedek kapasite yaratılırken aynı zamanda taşıt emisyon miktarlarının da belli bir seviyede tutulması gerekliliği açıktır. Bu amaçla çalışmada, kent içi ulaşım ağlarında yedek kapasite en büyükleme ve taşıt emisyonları en küçükleme problemlerinin eş zamanlı çözümü amacıyla çok amaçlı iki seviyeli bir optimizasyon modeli geliştirilmiştir. Model 9 adet ışıklı kavşaktan oluşan bir test ulaşım ağına uygulanmıştır. Sonuçlar ulaşım ağının fiziksel ve işletimsel özelliklerinin izin verdiği kapasite kullanımının taşıt kaynaklı emisyon miktarında ciddi oranlarda artışa yol açtığını göstermektedir.

References

  • Başkan, Ö., Ozan, C. ve Ceylan, H., Kent içi Karayolu Ağlarında Işık Süreleri Dikkate Alınarak Yedek Kapasitenin Eniyilenmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 7(4), 787-795, (2019).
  • Webster, F. V. ve Cobbe, B. M., Traffic signal, Road Research Technical Paper No. 56, HMSO, London, (1966).
  • Allsop, R. E., Estimating the traffic capacity of a signalized road junction, Transportation Research, 6, 3, 245–255, (1972).
  • Wattleworth J. A. ve Ingram, J. W., A capacity analysis technique for highway junctions, Highway Research Board, Highway Research Report, 398, 31- 36, (1972).
  • Yagar, S., Addressing errors and omissions in paper on intersection capacity maximization, Transportation Research Part B: Methodological, 19, 1, 81–84, (1985).
  • Wong, S. C., On the reserve capacities of priority junctions and roundabouts, Transportation Research Part B: Methodological, 30, 6, 441–453, (1996).
  • Wong, S. C. ve Yang, H., Reserve capacity of a signal-controlled road network, Transportation Research Part B: Methodological, 31, 5, 397–402, (1997).
  • Ziyou, G. ve Yifan, S., A reserve capacity model of optimal signal control with user-equilibrium route choice, Transportation Research Part B: Methodological, 36, 4, 313–323, (2002).
  • Ge, Y. E., Zhang, H. M. ve Lam, W. H. K., Network reserve capacity under influence of traveler information, Journal of Transportation Engineering, 129, 3, 262–270, (2003).
  • Chen, A., Chootinan, P. ve Wong, S. C., New reserve capacity model of signal-controlled road network, Transportation Research Record: Journal of the Transportation Research Board, 1964, 35–41, (2006).
  • Miandoabchi, E. ve Farahani, R. Z., Optimizing reserve capacity of urban road networks in a discrete network design problem, Advances in Engineering Software, 42, 12, 1041–1050, (2011).
  • Chiou, S.-W., Optimal signal-setting for road network with maximum capacity, Information Sciences, 273, 287–303, (2014).
  • Wang, J., Deng, W. ve Zhao, J., Road network reserve capacity with stochastic user equilibrium, Transport, 30, 1, 103–116, (2015).
  • Baskan, O. ve Ozan, C., Reserve capacity model for optimizing traffic signal timings with an equity constraint, in Yaghoubi, H. (Ed.), Highway Engineering, IntechOpen, 1-15, London, UK, (2017).
  • Baskan, O., Ceylan, H. ve Ozan, C., A simultaneous solution for reserve capacity maximization and delay minimization problems in signalized road networks, Journal of Advanced Transportation, 2019, Article ID 6203137, 18 pages, (2019).
  • Kwak, J., Park, B. ve Lee, J., Evaluating the impacts of urban corridor traffic signal optimization on vehicle emissions and fuel consumption, Transportation Planning and Technology, 35, 2, 145–160, (2012).
  • Ferguson, E. M., Duthie, J. ve Waller, S. T., Comparing delay minimization and emissions minimization in the network design problem, Computer-Aided Civil and Infrastructure Engineering, 27, 4, 288–302, (2012).
  • Zhang, L., Yin, Y. ve Chen, S., Robust signal timing optimization with environmental concerns, Transportation Research Part C: Emerging Technologies, 29, 55–71, (2013).
  • Li, Z.-C. ve Ge, X.-Y., Traffic signal timing problems with environmental and equity considerations, Journal of Advanced Transportation, 48, 8, 1066–1086, (2014).
  • Baskan, O., A Multiobjective Bilevel Programming Model for Environmentally Friendly Traffic Signal Timings, Advances in Civil Engineering, 2019, Article ID 1638618, 13 pages, (2019).
  • Szeto, W. Y., Wang, Y. ve Wong, S. C., The chemical reaction optimization approach to solving the environmentally sustainable network design problem, Computer-Aided Civil and Infrastructure Engineering, 29, 2, 140-158, (2014).
  • Bell, M. G. H. ve Shield, C. M., A log-linear model for path flow estimation, Proceedings of the 4th International Conference on the Applications of Advanced Technologies in Transportation Engineering, Stephanedes, Y.J. ve Filippi, F. (Eds.), 695-699, Capri, Italy, (1995).
  • Ceylan, H., A genetic algorithm approach to the equilibrium network design problem, Ph.D.Thesis, University of Newcastle upon Tyne, Newcastle, UK, (2002).
  • Ceylan, H. ve Bell, M. G. H., Reserve capacity for a road network under optimized fixed time traffic signal control, Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 8 (2), 87-99, (2004).
  • Dell’Orco, M., Baskan, O. ve Marinelli, M., A Harmony Search algorithm approach for optimizing traffic signal timings, Promet—Traffic & Transportation, 25, 4, 349–358, (2013).
  • Başkan, Ö., Ceylan, H. ve Ozan, C., Investigating Acceptable Level of Travel Demand Before Capacity Enhancement for Signalized Urban Road Networks, Teknik Dergi, 31 (2), 9897-9917, (2020).
  • Baskan, O. ve Ceylan, H., Modified Differential Evolution Algorithm for the Continuous Network Design Problem, Procedia - Social and Behavioral Sciences, 111, 48-57, (2014).
  • Storn, R. ve Price, K., Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11, 4, 341–359, (1997).
  • Deb, A., Roy, J. S. ve Gupta, B., Performance comparison of differential evolution, particle swarm optimization and genetic algorithm in the design of circularly polarized microstrip antennas, IEEE Transactions on Antennas and Propagation, 62, 8, 3920–3928, (2014).
  • Nolle, L., Zelinka, I., Hopgood, A. ve Goodyear, A., Comparison of an self-organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning, Advances in Engineering Software, 36, 10, 645–653, (2005).
  • Vincenzi, L., De Roeck, G. ve Savoia, M., Comparison between coupled local minimizers method and differential evolution algorithm in dynamic damage detection problems, Advances in Engineering Software, 65, 90–100, (2013).
  • Bracinik, P., Dezelak, K., Otcenasova, A. ve H¨oger, M., Comparison between the particle swarm optimisation and differential evolution approaches for the optimal proportional–integral controllers design during photovoltaic power plantsmodelling, IET Renewable Power Generation, 10, 4, 522–530, (2016).
  • Gartner, N. H., Little, J. D. C. ve Gabbay, H., Optimization of traffic signal settings by mixed-integer linear programming, Transportation Science, 9, 4, 321–343, (1975).
  • Jovanovic, A., Nikolic, M. ve Teodorovic, D., Area-wide urban traffic control: a bee colony optimization approach, Transportation Research Part C: Emerging Technologies, 77, 329–350, (2017).

1Simultaneous solution for reserve capacity maximization and vehicle emission minimization problems in urban road networks

Year 2024, Volume: 26 Issue: 2, 373 - 392, 15.07.2024
https://doi.org/10.25092/baunfbed.1424447

Abstract

The traffic congestion in urban road networks and the arising problems have attracted the attention of researchers for many years, and many studies have been carried out on this subject. The first practices applied by local authorities to reduce congestion are road expansion and changes in intersection control type. However, it is possible to reveal reserve capacity in urban road networks by optimising the timing of traffic signals, particularly in developing countries where most intersections are controlled by traffic signals. The release of reserve capacity, on the other hand, causes an increase in vehicle emissions in the urban road network, which has a negative impact on the environment and human health. For this reason, it is clear that, while releasing reserve capacity by optimizing the timing of traffic signals, it is also necessary to keep vehicle emissions at a certain level. For this purpose, in this study, a multi-objective bi-level optimisation model is developed for the simultaneous solution of reserve capacity maximisation and vehicle emissions minimization problems in urban road networks. The developed model has been applied to a road network consisting of 9 signalized intersections. The results show that the capacity utilisation allowed by the physical and operational characteristics of the road network leads to a significant increase in vehicle emissions.

References

  • Başkan, Ö., Ozan, C. ve Ceylan, H., Kent içi Karayolu Ağlarında Işık Süreleri Dikkate Alınarak Yedek Kapasitenin Eniyilenmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 7(4), 787-795, (2019).
  • Webster, F. V. ve Cobbe, B. M., Traffic signal, Road Research Technical Paper No. 56, HMSO, London, (1966).
  • Allsop, R. E., Estimating the traffic capacity of a signalized road junction, Transportation Research, 6, 3, 245–255, (1972).
  • Wattleworth J. A. ve Ingram, J. W., A capacity analysis technique for highway junctions, Highway Research Board, Highway Research Report, 398, 31- 36, (1972).
  • Yagar, S., Addressing errors and omissions in paper on intersection capacity maximization, Transportation Research Part B: Methodological, 19, 1, 81–84, (1985).
  • Wong, S. C., On the reserve capacities of priority junctions and roundabouts, Transportation Research Part B: Methodological, 30, 6, 441–453, (1996).
  • Wong, S. C. ve Yang, H., Reserve capacity of a signal-controlled road network, Transportation Research Part B: Methodological, 31, 5, 397–402, (1997).
  • Ziyou, G. ve Yifan, S., A reserve capacity model of optimal signal control with user-equilibrium route choice, Transportation Research Part B: Methodological, 36, 4, 313–323, (2002).
  • Ge, Y. E., Zhang, H. M. ve Lam, W. H. K., Network reserve capacity under influence of traveler information, Journal of Transportation Engineering, 129, 3, 262–270, (2003).
  • Chen, A., Chootinan, P. ve Wong, S. C., New reserve capacity model of signal-controlled road network, Transportation Research Record: Journal of the Transportation Research Board, 1964, 35–41, (2006).
  • Miandoabchi, E. ve Farahani, R. Z., Optimizing reserve capacity of urban road networks in a discrete network design problem, Advances in Engineering Software, 42, 12, 1041–1050, (2011).
  • Chiou, S.-W., Optimal signal-setting for road network with maximum capacity, Information Sciences, 273, 287–303, (2014).
  • Wang, J., Deng, W. ve Zhao, J., Road network reserve capacity with stochastic user equilibrium, Transport, 30, 1, 103–116, (2015).
  • Baskan, O. ve Ozan, C., Reserve capacity model for optimizing traffic signal timings with an equity constraint, in Yaghoubi, H. (Ed.), Highway Engineering, IntechOpen, 1-15, London, UK, (2017).
  • Baskan, O., Ceylan, H. ve Ozan, C., A simultaneous solution for reserve capacity maximization and delay minimization problems in signalized road networks, Journal of Advanced Transportation, 2019, Article ID 6203137, 18 pages, (2019).
  • Kwak, J., Park, B. ve Lee, J., Evaluating the impacts of urban corridor traffic signal optimization on vehicle emissions and fuel consumption, Transportation Planning and Technology, 35, 2, 145–160, (2012).
  • Ferguson, E. M., Duthie, J. ve Waller, S. T., Comparing delay minimization and emissions minimization in the network design problem, Computer-Aided Civil and Infrastructure Engineering, 27, 4, 288–302, (2012).
  • Zhang, L., Yin, Y. ve Chen, S., Robust signal timing optimization with environmental concerns, Transportation Research Part C: Emerging Technologies, 29, 55–71, (2013).
  • Li, Z.-C. ve Ge, X.-Y., Traffic signal timing problems with environmental and equity considerations, Journal of Advanced Transportation, 48, 8, 1066–1086, (2014).
  • Baskan, O., A Multiobjective Bilevel Programming Model for Environmentally Friendly Traffic Signal Timings, Advances in Civil Engineering, 2019, Article ID 1638618, 13 pages, (2019).
  • Szeto, W. Y., Wang, Y. ve Wong, S. C., The chemical reaction optimization approach to solving the environmentally sustainable network design problem, Computer-Aided Civil and Infrastructure Engineering, 29, 2, 140-158, (2014).
  • Bell, M. G. H. ve Shield, C. M., A log-linear model for path flow estimation, Proceedings of the 4th International Conference on the Applications of Advanced Technologies in Transportation Engineering, Stephanedes, Y.J. ve Filippi, F. (Eds.), 695-699, Capri, Italy, (1995).
  • Ceylan, H., A genetic algorithm approach to the equilibrium network design problem, Ph.D.Thesis, University of Newcastle upon Tyne, Newcastle, UK, (2002).
  • Ceylan, H. ve Bell, M. G. H., Reserve capacity for a road network under optimized fixed time traffic signal control, Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 8 (2), 87-99, (2004).
  • Dell’Orco, M., Baskan, O. ve Marinelli, M., A Harmony Search algorithm approach for optimizing traffic signal timings, Promet—Traffic & Transportation, 25, 4, 349–358, (2013).
  • Başkan, Ö., Ceylan, H. ve Ozan, C., Investigating Acceptable Level of Travel Demand Before Capacity Enhancement for Signalized Urban Road Networks, Teknik Dergi, 31 (2), 9897-9917, (2020).
  • Baskan, O. ve Ceylan, H., Modified Differential Evolution Algorithm for the Continuous Network Design Problem, Procedia - Social and Behavioral Sciences, 111, 48-57, (2014).
  • Storn, R. ve Price, K., Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11, 4, 341–359, (1997).
  • Deb, A., Roy, J. S. ve Gupta, B., Performance comparison of differential evolution, particle swarm optimization and genetic algorithm in the design of circularly polarized microstrip antennas, IEEE Transactions on Antennas and Propagation, 62, 8, 3920–3928, (2014).
  • Nolle, L., Zelinka, I., Hopgood, A. ve Goodyear, A., Comparison of an self-organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning, Advances in Engineering Software, 36, 10, 645–653, (2005).
  • Vincenzi, L., De Roeck, G. ve Savoia, M., Comparison between coupled local minimizers method and differential evolution algorithm in dynamic damage detection problems, Advances in Engineering Software, 65, 90–100, (2013).
  • Bracinik, P., Dezelak, K., Otcenasova, A. ve H¨oger, M., Comparison between the particle swarm optimisation and differential evolution approaches for the optimal proportional–integral controllers design during photovoltaic power plantsmodelling, IET Renewable Power Generation, 10, 4, 522–530, (2016).
  • Gartner, N. H., Little, J. D. C. ve Gabbay, H., Optimization of traffic signal settings by mixed-integer linear programming, Transportation Science, 9, 4, 321–343, (1975).
  • Jovanovic, A., Nikolic, M. ve Teodorovic, D., Area-wide urban traffic control: a bee colony optimization approach, Transportation Research Part C: Emerging Technologies, 77, 329–350, (2017).
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Transportation and Traffic
Journal Section Research Articles
Authors

Cenk Ozan 0000-0003-0690-6033

Özgür Başkan 0000-0001-5016-8328

Early Pub Date July 14, 2024
Publication Date July 15, 2024
Submission Date January 23, 2024
Acceptance Date March 5, 2024
Published in Issue Year 2024 Volume: 26 Issue: 2

Cite

APA Ozan, C., & Başkan, Ö. (2024). Kent içi karayolu ağlarında yedek kapasite ve taşıt emisyonu problemlerinin eş zamanlı çözümü. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 373-392. https://doi.org/10.25092/baunfbed.1424447
AMA Ozan C, Başkan Ö. Kent içi karayolu ağlarında yedek kapasite ve taşıt emisyonu problemlerinin eş zamanlı çözümü. BAUN Fen. Bil. Enst. Dergisi. July 2024;26(2):373-392. doi:10.25092/baunfbed.1424447
Chicago Ozan, Cenk, and Özgür Başkan. “Kent içi Karayolu ağlarında Yedek Kapasite Ve taşıt Emisyonu Problemlerinin Eş Zamanlı çözümü”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, no. 2 (July 2024): 373-92. https://doi.org/10.25092/baunfbed.1424447.
EndNote Ozan C, Başkan Ö (July 1, 2024) Kent içi karayolu ağlarında yedek kapasite ve taşıt emisyonu problemlerinin eş zamanlı çözümü. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 2 373–392.
IEEE C. Ozan and Ö. Başkan, “Kent içi karayolu ağlarında yedek kapasite ve taşıt emisyonu problemlerinin eş zamanlı çözümü”, BAUN Fen. Bil. Enst. Dergisi, vol. 26, no. 2, pp. 373–392, 2024, doi: 10.25092/baunfbed.1424447.
ISNAD Ozan, Cenk - Başkan, Özgür. “Kent içi Karayolu ağlarında Yedek Kapasite Ve taşıt Emisyonu Problemlerinin Eş Zamanlı çözümü”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/2 (July 2024), 373-392. https://doi.org/10.25092/baunfbed.1424447.
JAMA Ozan C, Başkan Ö. Kent içi karayolu ağlarında yedek kapasite ve taşıt emisyonu problemlerinin eş zamanlı çözümü. BAUN Fen. Bil. Enst. Dergisi. 2024;26:373–392.
MLA Ozan, Cenk and Özgür Başkan. “Kent içi Karayolu ağlarında Yedek Kapasite Ve taşıt Emisyonu Problemlerinin Eş Zamanlı çözümü”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 26, no. 2, 2024, pp. 373-92, doi:10.25092/baunfbed.1424447.
Vancouver Ozan C, Başkan Ö. Kent içi karayolu ağlarında yedek kapasite ve taşıt emisyonu problemlerinin eş zamanlı çözümü. BAUN Fen. Bil. Enst. Dergisi. 2024;26(2):373-92.