Research Article
BibTex RIS Cite

Analysis of Memcapacitor Based Low Pass Filter

Year 2022, , 37 - 44, 10.10.2022
https://doi.org/10.53070/bbd.1174295

Abstract

Discovery of memristor (memory resistor) element, which describes the relationship between electrical charge and magnetic flux and represents a two-terminal element whose resistance changes depending on the applied voltage, formed the basis of memristive systems. By associating the capacitor and inductor elements with the memristive systems, the working area of memristive systems has been expanded and the new memory circuit elements called memcapacitor (memory capacitor) and meminductor (memory inductor) have taken their place in the literature in addition to the memristor. The characteristic behavior of the memcapacitor shows the pinched hysteretic loop in the two state variables which are described as the electrical charge and the voltage. In this study, the memcapacitor element and its emulator circuit are considered for the analysis of a low-pass filter (LPF) circuit. Thus, the performance quality of the low-pass filter circuits with standard capacitor and memcapacitor is compared. As a result of the comparison, it was concluded that the low-pass filter circuit based on memcapacitor provides relatively better filtering performance than the classical filter circuit. In addition, it has been observed that the reactive power consumed by the memcapacitor is less than the reactive power consumed by the standard capacitor, as a result of the memcapacitor drawing less current from the circuit compared to the standard capacitor. These contributions offer promising results for future electronic studies.

References

  • Arora, A., & Niranjan, V. (2017). Low power filter design using memristor, meminductor and memcapacitor. 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017, 2018-Janua(c), 113–117. https://doi.org/10.1109/UPCON.2017.8251032
  • Babacan, Y. (2018). An operational transconductance amplifier-based memcapacitor and meminductor. Istanbul University - Journal of Electrical and Electronics Engineering, 18(1), 36–38. https://doi.org/10.5152/iujeee.2018.1806
  • Chua, L. O. (1971). Memristor—The Missing Circuit Element. IEEE Transactions on Circuit Theory, 18(5), 507–519. https://doi.org/10.1109/TCT.1971.1083337
  • Chua, L. O. & Kang, S. M. Memristive devices and systems, Proceedings of the IEEE, 64(2)2, 209-223. https://doi.org/10.1109/PROC.1976.10092.
  • Di Ventra, M., Pershin, Y. V., & Chua, L. O. (2009). Circuit elements with memory: Memristors, memcapacitors, and meminductors. In Proceedings of the IEEE (Vol. 97, Issue 10, pp. 1717–1724). https://doi.org/10.1109/JPROC.2009.2021077
  • Driscoll, T., Quinn, J., Klein, S., Kim, H. T., Kim, B. J., Pershin, Y. V., Di Ventra, M., & Basov, D. N. (2010). Memristive adaptive filters. Applied Physics Letters, 97(9), 2008–2011. https://doi.org/10.1063/1.3485060
  • Fouda, M. E., & Radwan, A. G. (2012). Charge controlled memristor-less memcapacitor emulator. Electronics Letters, 48(23), 1454–1455. https://doi.org/10.1049/el.2012.3151
  • Gursul, S., & Hamamci, S. E. (2021). Investigation of Power Consumption Effect of Various Memristor Emulators on a Logic Gate. European Journal of Technique, 11(2), 200–208. https://doi.org/10.36222/ejt.931338
  • Gursul, S., & Hamamci, S. E. (2019). Comparison of Different Memristor Emulators on Low-Pass Filter Circuit Sevgi. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1–4. http://doi.org/10.1109/ISMSIT.2019.8932838
  • Li, Y., Yang, C., Yu, Y., & Diez, F. F. (2017). Research on low pass filter based on Memristor and memcapacitor. Chinese Control Conference, CCC, 5110–5113. https://doi.org/10.23919/ChiCC.2017.8028162
  • Liu, Y., & Iu, H. H. C. (2020). Novel Floating and Grounded Memory Interface Circuits for Constructing Mem-Elements and Their Applications. IEEE Access, 8, 114761–114772. https://doi.org/10.1109/ACCESS.2020.3004160
  • Pershin, Y. V., & Di Ventra, M. (2012). Neuromorphic, digital, and quantum computation with memory circuit elements. Proceedings of the IEEE, 100(6), 2071–2080. https://doi.org/10.1109/JPROC.2011.2166369
  • Prodromakis, T., Peh, B. P., Papavassiliou, C., & Toumazou, C. (2011). A versatile memristor model with nonlinear dopant kinetics. IEEE Transactions on Electron Devices, 58(9), 3099–3105. https://doi.org/10.1109/TED.2011.2158004
  • Romero, F. J., Morales, D. P., Godoy, A., Ruiz, F. G., Tienda-Luna, I. M., Ohata, A., & Rodriguez, N. (2019). Memcapacitor emulator based on the Miller effect. International Journal of Circuit Theory and Applications, 47(4), 572–579. https://doi.org/10.1002/cta.2604
  • Romero, F. J., Ohata, A., Toral-Lopez, A., Godoy, A., Morales, D. P., & Rodriguez, N. (2021). Memcapacitor and meminductor circuit emulators: A review. Electronics (Switzerland), 10(11). https://doi.org/10.3390/electronics10111225
  • Sah, M. P., Yang, C., Budhathoki, R. K., Kim, H., & Yoo, H. J. (2013). Implementation of a memcapacitor emulator with off-the-shelf devices. Elektronika Ir Elektrotechnika, 19(8), 54–58. https://doi.org/10.5755/j01.eee.19.8.2673
  • Sahin, M.E., Guler, H., Hamamci, S.E. (2020). Design and realization of a hyperchaotic memristive system for communication system on FPGA. Traitement du Signal, 37(6), 939-953. https://doi.org/10.18280/ts.370607
  • Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453(7191), 80–83. https://doi.org/10.1038/nature06932
  • Wang, X. Y., Fitch, A. L., Iu, H. H. C., & Qi, W. G. (2012). Design of a memcapacitor emulator based on a memristor. Physics Letters, Section A: General, Atomic and Solid State Physics, 376(4), 394–399. https://doi.org/10.1016/j.physleta.2011.11.012
  • Yesil, A., & Babacan, Y. (2021). Electronically Controllable Memcapacitor Circuit with Experimental Results. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(4), 1443–1447. https://doi.org/10.1109/TCSII.2020.3030114
  • Yin, Z., Tian, H., Chen, G., & Chua, L. O. (2015). What are memristor, memcapacitor, and meminductor? IEEE Transactions on Circuits and Systems II: Express Briefs, 62(4), 402–406. https://doi.org/10.1109/TCSII.2014.2387653
  • Yu, D., Zhao, X., Sun, T., Iu, H. H. C., & Fernando, T. (2020). A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(7), 1334–1338. https://doi.org/10.1109/TCSII.2019.2936453

Analysis of Memcapacitor Based Low Pass Filter

Year 2022, , 37 - 44, 10.10.2022
https://doi.org/10.53070/bbd.1174295

Abstract

Elektrik yükü ile manyetik akı arasındaki ilişkiyi tanımlayan ve uygulanan gerilime bağlı olarak direnci değişen iki uçlu bir elemanı temsil eden memristör (hafızalı direnç) elemanının keşfi, memristif sistemlerin temelini oluşturmuştur. Kondansatör ve indüktör elemanlarının memristif sistemlerle ilişkilendirilmesi ile memristif sistemlerin çalışma alanı genişletilmiş ve memristöre ek olarak memkapasitör (hafızalı kondansatör) ve memindüktör (hafızalı indüktör) olarak adlandırılan yeni hafızalı devre elemanları literatürde yerini almıştır. Memkapasitörün karakteristik davranışı, elektrik yükü ve voltaj olarak tanımlanan iki durum değişkeninde sıkışmış histeretik döngü şeklinde gösterilmektedir. Bu çalışmada, bir alçak geçiren filtre (AGF) devresinin analizi için memkapasitör elemanı ve onun emülatör devresi ele alınmıştır. Böylece standart kondansatörlü ve memkapasitörlü alçak geçiren filtre devrelerinin performans kalitesi karşılaştırılmıştır. Karşılaştırma sonucunda memkapasitör tabanlı alçak geçiren filtre devresinin klasik filtre devresine göre nispeten daha iyi filtreleme performansı sağladığı sonucuna varılmıştır. Ayrıca memkapasitörün standart kondansatöre göre devreden daha az akım çekmesi sonucunda memkapasitörün tükettiği reaktif gücün standart kondansatörün tükettiği reaktif güçten daha az olduğu gözlemlenmiştir. Bu katkılar, gelecekteki elektronik çalışmalar için umut verici sonuçlar sunmaktadır.

References

  • Arora, A., & Niranjan, V. (2017). Low power filter design using memristor, meminductor and memcapacitor. 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017, 2018-Janua(c), 113–117. https://doi.org/10.1109/UPCON.2017.8251032
  • Babacan, Y. (2018). An operational transconductance amplifier-based memcapacitor and meminductor. Istanbul University - Journal of Electrical and Electronics Engineering, 18(1), 36–38. https://doi.org/10.5152/iujeee.2018.1806
  • Chua, L. O. (1971). Memristor—The Missing Circuit Element. IEEE Transactions on Circuit Theory, 18(5), 507–519. https://doi.org/10.1109/TCT.1971.1083337
  • Chua, L. O. & Kang, S. M. Memristive devices and systems, Proceedings of the IEEE, 64(2)2, 209-223. https://doi.org/10.1109/PROC.1976.10092.
  • Di Ventra, M., Pershin, Y. V., & Chua, L. O. (2009). Circuit elements with memory: Memristors, memcapacitors, and meminductors. In Proceedings of the IEEE (Vol. 97, Issue 10, pp. 1717–1724). https://doi.org/10.1109/JPROC.2009.2021077
  • Driscoll, T., Quinn, J., Klein, S., Kim, H. T., Kim, B. J., Pershin, Y. V., Di Ventra, M., & Basov, D. N. (2010). Memristive adaptive filters. Applied Physics Letters, 97(9), 2008–2011. https://doi.org/10.1063/1.3485060
  • Fouda, M. E., & Radwan, A. G. (2012). Charge controlled memristor-less memcapacitor emulator. Electronics Letters, 48(23), 1454–1455. https://doi.org/10.1049/el.2012.3151
  • Gursul, S., & Hamamci, S. E. (2021). Investigation of Power Consumption Effect of Various Memristor Emulators on a Logic Gate. European Journal of Technique, 11(2), 200–208. https://doi.org/10.36222/ejt.931338
  • Gursul, S., & Hamamci, S. E. (2019). Comparison of Different Memristor Emulators on Low-Pass Filter Circuit Sevgi. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1–4. http://doi.org/10.1109/ISMSIT.2019.8932838
  • Li, Y., Yang, C., Yu, Y., & Diez, F. F. (2017). Research on low pass filter based on Memristor and memcapacitor. Chinese Control Conference, CCC, 5110–5113. https://doi.org/10.23919/ChiCC.2017.8028162
  • Liu, Y., & Iu, H. H. C. (2020). Novel Floating and Grounded Memory Interface Circuits for Constructing Mem-Elements and Their Applications. IEEE Access, 8, 114761–114772. https://doi.org/10.1109/ACCESS.2020.3004160
  • Pershin, Y. V., & Di Ventra, M. (2012). Neuromorphic, digital, and quantum computation with memory circuit elements. Proceedings of the IEEE, 100(6), 2071–2080. https://doi.org/10.1109/JPROC.2011.2166369
  • Prodromakis, T., Peh, B. P., Papavassiliou, C., & Toumazou, C. (2011). A versatile memristor model with nonlinear dopant kinetics. IEEE Transactions on Electron Devices, 58(9), 3099–3105. https://doi.org/10.1109/TED.2011.2158004
  • Romero, F. J., Morales, D. P., Godoy, A., Ruiz, F. G., Tienda-Luna, I. M., Ohata, A., & Rodriguez, N. (2019). Memcapacitor emulator based on the Miller effect. International Journal of Circuit Theory and Applications, 47(4), 572–579. https://doi.org/10.1002/cta.2604
  • Romero, F. J., Ohata, A., Toral-Lopez, A., Godoy, A., Morales, D. P., & Rodriguez, N. (2021). Memcapacitor and meminductor circuit emulators: A review. Electronics (Switzerland), 10(11). https://doi.org/10.3390/electronics10111225
  • Sah, M. P., Yang, C., Budhathoki, R. K., Kim, H., & Yoo, H. J. (2013). Implementation of a memcapacitor emulator with off-the-shelf devices. Elektronika Ir Elektrotechnika, 19(8), 54–58. https://doi.org/10.5755/j01.eee.19.8.2673
  • Sahin, M.E., Guler, H., Hamamci, S.E. (2020). Design and realization of a hyperchaotic memristive system for communication system on FPGA. Traitement du Signal, 37(6), 939-953. https://doi.org/10.18280/ts.370607
  • Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453(7191), 80–83. https://doi.org/10.1038/nature06932
  • Wang, X. Y., Fitch, A. L., Iu, H. H. C., & Qi, W. G. (2012). Design of a memcapacitor emulator based on a memristor. Physics Letters, Section A: General, Atomic and Solid State Physics, 376(4), 394–399. https://doi.org/10.1016/j.physleta.2011.11.012
  • Yesil, A., & Babacan, Y. (2021). Electronically Controllable Memcapacitor Circuit with Experimental Results. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(4), 1443–1447. https://doi.org/10.1109/TCSII.2020.3030114
  • Yin, Z., Tian, H., Chen, G., & Chua, L. O. (2015). What are memristor, memcapacitor, and meminductor? IEEE Transactions on Circuits and Systems II: Express Briefs, 62(4), 402–406. https://doi.org/10.1109/TCSII.2014.2387653
  • Yu, D., Zhao, X., Sun, T., Iu, H. H. C., & Fernando, T. (2020). A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(7), 1334–1338. https://doi.org/10.1109/TCSII.2019.2936453
There are 22 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section PAPERS
Authors

Feras Dahrouj 0000-0002-9291-0997

Sevgi Gürsul 0000-0002-5013-1178

Serdar Ethem Hamamcı 0000-0002-1868-6843

Publication Date October 10, 2022
Submission Date September 12, 2022
Acceptance Date September 16, 2022
Published in Issue Year 2022

Cite

APA Dahrouj, F., Gürsul, S., & Hamamcı, S. E. (2022). Analysis of Memcapacitor Based Low Pass Filter. Computer Science, IDAP-2022 : International Artificial Intelligence and Data Processing Symposium, 37-44. https://doi.org/10.53070/bbd.1174295

The Creative Commons Attribution 4.0 International License 88x31.png  is applied to all research papers published by JCS and

a Digital Object Identifier (DOI)     Logo_TM.png  is assigned for each published paper.