Research Article
BibTex RIS Cite

Comparison Of Karcı And Shannon Entropies

Year 2019, Volume: 4 Issue: 2, 68 - 73, 01.12.2019

Abstract

Entropy gives the irregularity of physical systems and also gives the
amount of information that cannot be understood in digital systems. For this
purpose, the definition of entropy was made by Shannon for digital data. The
definition of entropy using the concept of fractional order derivative was made
by Karcı. In this study, the results of Karcı and Shannon entropy definitions
in different probability environments were compared.

References

  • [1] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 379–423, 623–656.[2] S. Bouzebda, I. Elhattab, New Kernel-types Estimator of Shannon’s Entropy, Comptes Rendus Mathematique, vol. 352, Comptes Rendus de l’Académiedes Sciences–Series I–Mathematics, 2014, pp. 75–80.[3] M.R. Ubriaco, Entropies based on fractional calculus, Phys. Lett. A 373 (2009) 2516–2519.[4] A. Karcı, A new approach for fractional order derivative and its applications, Univ. J. Eng. Sci. 1 (2013) 110–117.[5] A. Karcı, Properties of fractional order derivatives for groups of relations/functions, Univ. J. Eng. Sci. 3 (2015) 39–45.[6] A. Karcı, The linear, nonlinear and partial differential equations are not fractional order differential equations, Univ. J. Eng. Sci. 3 (2015) 46–51.[7] A. Karcı, Generalized fractional order derivatives for products and quotients, Sci. Innov. 3 (2015) 58–62.[8] A. Karcı, Chain rule for fractional order derivatives, Sci. Innov. 3 (2015) 63–67.[9] A. Karcı, “Fractional order entropy New perspectives”, Optik - International Journal for Light and Electron Optics, vol:127, no:20, pp:9172-9177, 2016.

Karcı ve Shannon Entropilerin Karşılaştırılması

Year 2019, Volume: 4 Issue: 2, 68 - 73, 01.12.2019

Abstract

Entropi, fiziksel sistemlerin düzensizliğini, dijital sistemler de ise,
anlam verilememiş bilgi miktarını vermektedir. Bu amaçla Shannon tarafından
dijital veriler için entropi tanımı yapılmıştır. Kesir dereceli türev kavramı
kullanılarak entropi tanımı ise Karcı tarafından yapılmıştır. Bu çalışmada
Karcı ve Shannon entropi tanımlarının farklı olasılık ortamlarında vermiş
oldukları sonuçların karşılaştırmaları yapılmıştır.

References

  • [1] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 379–423, 623–656.[2] S. Bouzebda, I. Elhattab, New Kernel-types Estimator of Shannon’s Entropy, Comptes Rendus Mathematique, vol. 352, Comptes Rendus de l’Académiedes Sciences–Series I–Mathematics, 2014, pp. 75–80.[3] M.R. Ubriaco, Entropies based on fractional calculus, Phys. Lett. A 373 (2009) 2516–2519.[4] A. Karcı, A new approach for fractional order derivative and its applications, Univ. J. Eng. Sci. 1 (2013) 110–117.[5] A. Karcı, Properties of fractional order derivatives for groups of relations/functions, Univ. J. Eng. Sci. 3 (2015) 39–45.[6] A. Karcı, The linear, nonlinear and partial differential equations are not fractional order differential equations, Univ. J. Eng. Sci. 3 (2015) 46–51.[7] A. Karcı, Generalized fractional order derivatives for products and quotients, Sci. Innov. 3 (2015) 58–62.[8] A. Karcı, Chain rule for fractional order derivatives, Sci. Innov. 3 (2015) 63–67.[9] A. Karcı, “Fractional order entropy New perspectives”, Optik - International Journal for Light and Electron Optics, vol:127, no:20, pp:9172-9177, 2016.
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section PAPERS
Authors

Ali Karci

Feyza Bilgiç This is me

Publication Date December 1, 2019
Submission Date December 23, 2018
Acceptance Date May 3, 2019
Published in Issue Year 2019 Volume: 4 Issue: 2

Cite

APA Karci, A., & Bilgiç, F. (2019). Karcı ve Shannon Entropilerin Karşılaştırılması. Computer Science, 4(2), 68-73.

The Creative Commons Attribution 4.0 International License 88x31.png is applied to all research papers published by JCS and

A Digital Object Identifier (DOI) Logo_TM.png is assigned for each published paper