One type of brain disease that significantly harms people's lives and health is stroke. The diagnosis and management of strokes both heavily rely on the quantitative analysis of brain Magnetic Resonance (MR) images. The early diagnosis process is of great importance for the prevention of stroke cases. Stroke prediction is made possible by deep neural networks with the capacity for enormous data learning. Therefore, in thus study, several deep neural network models, including DenseNet121, ResNet50, Xception, MobileNet, VGG16, and EfficientNetB2 are proposed for transfer learning to classify MR images into two categories (stroke and non-stroke) in order to study the characteristics of the stroke lesions and achieve full intelligent automatic detection. The study dataset comprises of 1901 training images, 475 validation images, and 250 testing images. On the training and validation sets, data augmentation was used to increase the number of images to improve the models’ learning. The experimental results outperform all the state of arts that were used the same dataset. The overall accuracy of the best model is 98.8% and the same value for precision, recall, and f1-score using the EfficientNetB2 model for transfer learning.
Bu çalışma "6th International Artificial Intelligence and Data Processing Symposium"da bildiri olarak sunulmuştur.
One type of brain disease that significantly harms people's lives and health is stroke. The diagnosis and management of strokes both heavily rely on the quantitative analysis of brain Magnetic Resonance (MR) images. The early diagnosis process is of great importance for the prevention of stroke cases. Stroke prediction is made possible by deep neural networks with the capacity for enormous data learning. Therefore, in thus study, several deep neural network models, including DenseNet121, ResNet50, Xception, MobileNet, VGG16, and EfficientNetB2 are proposed for transfer learning to classify MR images into two categories (stroke and non-stroke) in order to study the characteristics of the stroke lesions and achieve full intelligent automatic detection. The study dataset comprises of 1901 training images, 475 validation images, and 250 testing images. On the training and validation sets, data augmentation was used to increase the number of images to improve the models’ learning. The experimental results outperform all the state of arts that were used the same dataset. The overall accuracy of the best model is 98.8% and the same value for precision, recall, and f1-score using the EfficientNetB2 model for transfer learning.
Primary Language | English |
---|---|
Subjects | Artificial Intelligence |
Journal Section | PAPERS |
Authors | |
Publication Date | October 10, 2022 |
Submission Date | September 9, 2022 |
Acceptance Date | September 16, 2022 |
Published in Issue | Year 2022 Volume: IDAP-2022 : International Artificial Intelligence and Data Processing Symposium |
The Creative Commons Attribution 4.0 International License is applied to all research papers published by JCS and
A Digital Object Identifier (DOI) is assigned for each published paper.