Yapılan bir şikayet üzerine ve MathWorks tarafından gönderilen bir e-posta sonucunda yapılan incelemede bu makalede atıf hatası yapıldığı ve bundan dolayı geril çekilmesine karar verilmiştir. Şikayet metni ve MathWorks tarafından gönderilen talep metinleri muhafaza altına alınmış olup, yazarım kurumuna durum iletilecektir.
Bu çalışma, Derin Öğrenme ve 5G ile oluşturulan veriler kullanılarak kanal tahmini için bir evrişimsel sinir ağının (CNN) nasıl eğitileceğini gösterir. Eğitilmiş CNN, fiziksel aşağı bağlantı paylaşılan kanal (PDSCH) demodülasyon referans sinyalini (DM-RS) kullanarak tek girişli tek çıkışlı (SISO) modunda kanal tahmini gerçekleştirilmiştir. Kanal tahmini için genel yaklaşım, iletim kanalı içine değeri bilinen referans pilot sembolleri eklemek ve daha sonra bu pilot sembolleri kullanarak kanal yanıtının geri kalanını enterpolasyon yapmaktır. Kanal tahmini yapmak için derin öğrenme teknikleri de kullanılabilir. Örneğin, PDSCH kaynak ızgarasını 2 boyutlu bir görüntü olarak görüntüleyerek, kanal tahmini problemini, CNN'lerin etkili olduğu gürültü giderme veya süper çözünürlüğe benzer bir görüntü işleme problemine dönüştürebilir. Bu çalışma, bu tür eğitim verilerinin nasıl oluşturulacağını ve bir kanal tahmini uygulamasında CNN'nin nasıl eğitileceğini gösterir. Ayrıca, lineer enterpolasyon ile alınan pilot sembolleri içeren görüntüleri işlemek için CNN kanal tahmininin nasıl kullanılacağını gösterir. Bu çalışma, pratik ve mükemmel tahmin edicilere kıyasla sinir ağı kanal tahmincisinin sonuçlarını görselleştirerek sona ermektedir.
Bu çalışma, Derin Öğrenme ve 5G ile oluşturulan veriler kullanılarak kanal tahmini için bir evrişimsel sinir ağının (CNN) nasıl eğitileceğini gösterir. Eğitilmiş CNN, fiziksel aşağı bağlantı paylaşılan kanal (PDSCH) demodülasyon referans sinyalini (DM-RS) kullanarak tek girişli tek çıkışlı (SISO) modunda kanal tahmini gerçekleştirilmiştir. Kanal tahmini için genel yaklaşım, iletim kanalı içine değeri bilinen referans pilot sembolleri eklemek ve daha sonra bu pilot sembolleri kullanarak kanal yanıtının geri kalanını enterpolasyon yapmaktır. Kanal tahmini yapmak için derin öğrenme teknikleri de kullanılabilir. Örneğin, PDSCH kaynak ızgarasını 2 boyutlu bir görüntü olarak görüntüleyerek, kanal tahmini problemini, CNN'lerin etkili olduğu gürültü giderme veya süper çözünürlüğe benzer bir görüntü işleme problemine dönüştürebilir. Bu çalışma, bu tür eğitim verilerinin nasıl oluşturulacağını ve bir kanal tahmini uygulamasında CNN'nin nasıl eğitileceğini gösterir. Ayrıca, lineer enterpolasyon ile alınan pilot sembolleri içeren görüntüleri işlemek için CNN kanal tahmininin nasıl kullanılacağını gösterir. Bu çalışma, pratik ve mükemmel tahmin edicilere kıyasla sinir ağı kanal tahmincisinin sonuçlarını görselleştirerek sona ermektedir.
Primary Language | Turkish |
---|---|
Subjects | Artificial Intelligence |
Journal Section | PAPERS |
Authors | |
Early Pub Date | June 8, 2023 |
Publication Date | June 8, 2023 |
Published in Issue | Year 2023 Volume: Vol:8 Issue: Issue:1 |
The Creative Commons Attribution 4.0 International License is applied to all research papers published by JCS and
A Digital Object Identifier (DOI) is assigned for each published paper.