Research Article
BibTex RIS Cite

Yazılım Risklerinin Doğasına Uygun Yöntem: Bulanık Mantık

Year 2021, Volume: 2 Issue: 1, 29 - 35, 15.06.2021

Abstract

“Bulanık Mantık”, insanlara “Klasik Mantık”da olduğu gibi ikili cevaplar (doğru/yanlış, evet/hayır, iyi/kötü, siyah/beyaz, vb.) vermek yerine belirsizliği de bir seçenek olarak ele alarak derecelendirme, yüzdeliklere ayırma, olasılıklara dayalı ya da oran orantı doğrultusunda cevaplar verebilmektedir. Bilgisayarın çalışma mantığının aksine, 1 ya da 0 veya doğru ya da yanlış demek yerine; çok doğru, az doğru, belirsiz, az yanlış, çok yanlış seçeneklerini bizlere cevap olarak sunabilmektedir. Günümüzde hemen hemen her alanda etkin bir şekilde kullanılan “Yapay Zekâ”nın içerisinde yer alan “Bulanık Mantık”, insan düşünce yapısına uygun bir şekilde hareket ederek, bir olayla ilgili karar verme mekanizmasını rahatça çalıştırabilmektedir. İnsan doğası gereği, karar verme yapısında net olmayan durumlar her zaman olabilmektedir. Kesin olmayan bu durumlar doğrultusunda, “belirsizliği” de içerisinde barındıran yazılım risklerinin belirlenmesi ve tanımlanması gerekliliği ortaya çıkmaktadır. Yazılım riskleri ele alınırken hem kendi yapısı ile örtüşen hem de proaktif yöntemler uygulanmalıdır. Bu sebepten dolayı, yazılım projelerinin başarısını düşürme gücüne sahip yazılım riskleri, kendi (çalışma) mekanizması ile uyumlu hareket edebilen bir yöntem ile etkin bir şekilde ortaya çıkartılıp bertaraf edilmelidir. Bu çalışmada, “Bulanık Mantık” yöntemine bağlı olarak “belirsizlik” kavramını bir seçenek olarak sunan ve içinde bulunduran “Bulanık Yaklaşım” tekniğiyle, yazılım geliştirme sürecinde negatif yönde bir etkiye sahip yazılım riskleri, doğasına uygun bir şekilde etkin olarak belirlenip tanımlandığı kendine has örnekleriyle detaylı bir şekilde anlatılmaya çalışılmıştır.

References

  • Arnuphaptrairong, T. (2011). Top ten lists of software project risks: Evidence from the literature survey. Proceedings of the International MultiConference of Engineers and Computer Scientists, 1, 1-6.
  • Birant, K. U., Işık, A. H., Batar, M., Akarsu, H. B., & Tektaş, A. B. (2019). Risk assessment and management method for distributed software development projects with “fuzzy approach”. International Journal of Computer Science and Software Engineering (IJCSSE), 8 (6), 133-139.
  • Carlsson, C., & Fuller, R. (2003). A fuzzy approach to real option valuation. Fuzzy Sets and Systems, 139 (2), 297-312.
  • Dey, P. K., Kinch, J., & Ogunlana, S. O. (2007). Managing risk in software development projects: A case study. Industrial Management & Data Systems, 107 (2), 284-303.
  • Fairley, R. (1994). Risk management for software projects. IEEE Software, 11 (3), 57-67.
  • Fu, Y., Li, M., & Chen, F. (2012). Impact propagation and risk assessment of requirement changes for software development projects based on design structure matrix. International Journal of Project Management, 30 (3), 363-373.
  • Hájek, P. (1998). Metamathematics of fuzzy logic. Dordrecht: Kluwer Academic Publishers.
  • Hall, E. M. (1998). Managing risk: methods for software systems development. United Kingdom: Pearson Education
  • Hoermann, S., Aust, M., Schermann, M., & Krcmar, H. (2012). Comparing risks in individual software development and standard software implementation projects: A delphi study. 2012 45th Hawaii International Conference on System Sciences, 4884-4893.
  • Inyang, U. G., & Joshua, E. E. (2013). Fuzzy clustering of students’ data repository for at-risks students identification and monitoring. Computer and Information Science, 6 (4), 37-50.
  • Jiang, J., & Klein, G. (2000). Software development risks to project effectiveness. The Journal of Systems and Software, 52 (1), 3-10.
  • Karataş, F., Koyuncu, İ., Tuna, M., ve Alçın, M. (2020). Bulanık mantık üyelik fonksiyonlarının fpga üzerinde gerçeklenmesi. Bilgisayar Bilimleri ve Teknolojileri Dergisi 1 (1) , 1-9.
  • Keil, M., Cule, P. E., Lyytinen, K., & Schmidt, R. C. (1998). A framework for identifying software project risks. Communications of the ACM, 41 (11), 76-83.
  • Kontio, J. (2001). Software engineering risk management: a method, improvement framework, and empirical evaluation. PhD Thesis, Helsinki University of Technology, Espoo.
  • Lezzoni, L. K. (1997). The risks of risk adjustment. JAMA Journal of the American Medical Association, 278 (19), 1600-1607.
  • Renn, O. (2004). Perception of risks. Toxicology Letters, 149 (1), 405-413.
  • Ross, T. J. (2017). Fuzzy Logic with engineering applications. United Kingdom: John Wiley & Sons Inc.
  • Shen, Q., & Chouchoulas, A. (2002). A rough-fuzzy approach for generating classification rules. Pattern Recognition, 35 (11), 2425-2438.
  • Smith, M. (1989). The people risks. Computer Law & Security Review, 4 (6), 2-6.

Appropriate Method for Software Risks’ Nature: Fuzzy Logic

Year 2021, Volume: 2 Issue: 1, 29 - 35, 15.06.2021

Abstract

“Fuzzy Logic” can give answers based on grading, separating percentages, probabilities or ratios by taking uncertainty as an option instead of giving people binary answers (true or false, yes or no, good or bad, black or white, etc.), as in “Classical Logic”. In addition, instead of giving answer as one or zero, right or wrong as in the computer working principle, it is able to present more right, less right, uncertain, less wrong or more wrong options as an answer to us. “Fuzzy Logic” included in the “Artificial Intelligence”, which is used and applied in almost all fields nowadays, can easily operate the decision-making mechanism regarding an event by acting in accordance with the human mind. Due to human nature, there can always be situations that are not clear in the decision-making structure. In line with these uncertain situations, the necessity of identifying and defining the software risks that contain “uncertainty” emerges. Thus, both structure overlapping and proactive methods has to be applied when addressing these software risks. For this reason, software risks that have the power to reduce the success of software projects has to be identified and eliminated effectively with a method that is able to act in harmony with software risks’ own mechanism. In this study, with the contribution of “Fuzzy Approach” technique, which presents and includes the concept of “uncertainty” based on the “Fuzzy Logic” method, it has been tried to be explained in detail with specific examples how software risks that have a negative effect in the software development process are determined and defined effectively in accordance with their nature.

References

  • Arnuphaptrairong, T. (2011). Top ten lists of software project risks: Evidence from the literature survey. Proceedings of the International MultiConference of Engineers and Computer Scientists, 1, 1-6.
  • Birant, K. U., Işık, A. H., Batar, M., Akarsu, H. B., & Tektaş, A. B. (2019). Risk assessment and management method for distributed software development projects with “fuzzy approach”. International Journal of Computer Science and Software Engineering (IJCSSE), 8 (6), 133-139.
  • Carlsson, C., & Fuller, R. (2003). A fuzzy approach to real option valuation. Fuzzy Sets and Systems, 139 (2), 297-312.
  • Dey, P. K., Kinch, J., & Ogunlana, S. O. (2007). Managing risk in software development projects: A case study. Industrial Management & Data Systems, 107 (2), 284-303.
  • Fairley, R. (1994). Risk management for software projects. IEEE Software, 11 (3), 57-67.
  • Fu, Y., Li, M., & Chen, F. (2012). Impact propagation and risk assessment of requirement changes for software development projects based on design structure matrix. International Journal of Project Management, 30 (3), 363-373.
  • Hájek, P. (1998). Metamathematics of fuzzy logic. Dordrecht: Kluwer Academic Publishers.
  • Hall, E. M. (1998). Managing risk: methods for software systems development. United Kingdom: Pearson Education
  • Hoermann, S., Aust, M., Schermann, M., & Krcmar, H. (2012). Comparing risks in individual software development and standard software implementation projects: A delphi study. 2012 45th Hawaii International Conference on System Sciences, 4884-4893.
  • Inyang, U. G., & Joshua, E. E. (2013). Fuzzy clustering of students’ data repository for at-risks students identification and monitoring. Computer and Information Science, 6 (4), 37-50.
  • Jiang, J., & Klein, G. (2000). Software development risks to project effectiveness. The Journal of Systems and Software, 52 (1), 3-10.
  • Karataş, F., Koyuncu, İ., Tuna, M., ve Alçın, M. (2020). Bulanık mantık üyelik fonksiyonlarının fpga üzerinde gerçeklenmesi. Bilgisayar Bilimleri ve Teknolojileri Dergisi 1 (1) , 1-9.
  • Keil, M., Cule, P. E., Lyytinen, K., & Schmidt, R. C. (1998). A framework for identifying software project risks. Communications of the ACM, 41 (11), 76-83.
  • Kontio, J. (2001). Software engineering risk management: a method, improvement framework, and empirical evaluation. PhD Thesis, Helsinki University of Technology, Espoo.
  • Lezzoni, L. K. (1997). The risks of risk adjustment. JAMA Journal of the American Medical Association, 278 (19), 1600-1607.
  • Renn, O. (2004). Perception of risks. Toxicology Letters, 149 (1), 405-413.
  • Ross, T. J. (2017). Fuzzy Logic with engineering applications. United Kingdom: John Wiley & Sons Inc.
  • Shen, Q., & Chouchoulas, A. (2002). A rough-fuzzy approach for generating classification rules. Pattern Recognition, 35 (11), 2425-2438.
  • Smith, M. (1989). The people risks. Computer Law & Security Review, 4 (6), 2-6.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Artificial Intelligence, Software Engineering
Journal Section Research Articles
Authors

Mustafa Batar 0000-0002-8231-6628

Kökten Birant 0000-0002-5107-6406

Ali Hakan Isık 0000-0003-3561-9375

Publication Date June 15, 2021
Submission Date March 22, 2021
Acceptance Date April 6, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

APA Batar, M., Birant, K., & Isık, A. H. (2021). Yazılım Risklerinin Doğasına Uygun Yöntem: Bulanık Mantık. Bilgisayar Bilimleri Ve Teknolojileri Dergisi, 2(1), 29-35.