Review
BibTex RIS Cite
Year 2019, Volume: 3 , 58 - 76, 31.12.2019
https://doi.org/10.30516/bilgesci.650160

Abstract

References

  • Abou El-Soud, N. H., El-Lithy, N. A., El-Saeed, G., Wahby, M. S., Khalil, M. Y., Morsy, F., & Shaffie, N. (2014). Renoprotective effects of Caraway (Carum carvi L.) essential oil in streptozotocin induced diabetic rats. Journal of Applied Pharmaceutical Science, 4(2), 27–33. https://doi.org/10.7324/JAPS.2014.40205
  • Adefegha, S. A., Oboh, G., Oyeleye, S. I., & Ejakpovi, I. (2017). Erectogenic, Antihypertensive, Antidiabetic, Anti-Oxidative Properties and Phenolic Compositions of Almond Fruit (Terminalia catappa L.) Parts (Hull and Drupe) – in vitro. Journal of Food Biochemistry, 41(2), 1–12. https://doi.org/10.1111/jfbc.12309
  • Adefegha, S. A., Oyeleye, S. I., & Oboh, G. (2015). Distribution of Phenolic Contents, Antidiabetic Potentials, Antihypertensive Properties, and Antioxidative Effects of Soursop (Annona muricata L.) Fruit Parts in Vitro. Biochemistry Research International, 2015. https://doi.org/10.1155/2015/347673
  • Al-Gubory, K. H., & Laher, I. (2018). Preface. Nutritional Antioxidant Therapies: Treatments and Perspectives, v–vi. https://doi.org/10.1007/978-3-319-67625-8
  • Ali, R. B., Atangwho, I. J., Kaur, N., Abraika, O. S., Ahmad, M., Mahmud, R., & Asmawi, M. Z. (2012). Bioassay-guided antidiabetic study of Phaleria macrocarpa fruit extract. Molecules, 17(5), 4986–5002. https://doi.org/10.3390/molecules17054986
  • Altun, M. L., Çitoǧlu, G. S., Yilmaz, B. S., Özbek, H., Bayram, I., & CengIz, N. (2010). Hepatoprotective and hypoglycemic activities of Viburnum opulus L. Turkish Journal of Pharmaceutical Sciences, 7(1), 35–48.
  • Andersson, U., Berger, K., Högberg, A., Landin-Olsson, M., & Holm, C. (2012). Effects of rose hip intake on risk markers of type 2 diabetes and cardiovascular disease: A randomized, double-blind, cross-over investigation in obese persons. European Journal of Clinical Nutrition, 66(5), 585–590. https://doi.org/10.1038/ejcn.2011.203
  • Anwer, T., Sharma, M., Khan, G., Iqbal, M., Ali, M. S., Alam, M. S., … Gupta, N. (2013). Rhus coriaria ameliorates insulin resistance in non-insulin-dependent diabetes mellitus (NIDDM) rats. Acta Poloniae Pharmaceutica - Drug Research, 70(5), 861–867.
  • Asgary, S., Rafieiankopaei, M., Sahebkar, A., Shamsi, F., & Goli-malekabadi, N. (2016). Anti-hyperglycemic and anti-hyperlipidemic effects of Vaccinium myrtillus fruit in experimentally induced diabetes (antidiabetic effect of Vaccinium myrtillus fruit). Journal of the Science of Food and Agriculture, 96(3), 764–768. https://doi.org/10.1002/jsfa.7144
  • Asghari, B., Salehi, P., Farimani, M. M., & Ebrahimi, S. N. (2015). α-Glucosidase Inhibitors from Fruits of Rosa canina L. Records of Natural Products, 9(3), 276–283.
  • Atal, S., Atal, S., Vyas, S., & Phadnis, P. (2016). Bio-enhancing effect of Piperine with Metformin on lowering blood glucose level in Alloxan induced diabetic mice. Pharmacognosy Research, 8(1), 56–60. https://doi.org/10.4103/0974-8490.171096
  • Balisteiro, D. M., Araujo, R. L. de, Giacaglia, L. R., & Genovese, M. I. (2017). Effect of clarified Brazilian native fruit juices on postprandial glycemia in healthy subjects. Food Research International, 100(May), 196–203. https://doi.org/10.1016/j.foodres.2017.08.044
  • Buah, E., Boerl, S., & Daun, D. A. N. (2016). Combination of ethanolic extract of α-glucosidase inhibitory activity of Phaleria macrocarpa (Scheff.) Boerl. Fruits and Annona muricata L. Leaves. Majalah Obat Tradisional, 21(2), 63–68. https://doi.org/10.22146/tradmedj.12819
  • Ceylan, E., Özbek, H., & Ağaoğlu, Z. (2003). Cuminum cyminum L. (Kimyon) Meyvesi Uçucu Yağının Median Lethal Doz (LD 50) Düzeyi ve Sağlıklı ve Diyabetli Farelerde Hipoglisemik Etkisinin Araştırılması, 10(2), 29–35.
  • Dabaghian, F. H., Kamalinejad, M., & Shojaei, A. (2012). Presenting anti-diabetic plants in Iranian traditional medicine, 3(November), 70–76. https://doi.org/10.5897/JDE12.004
  • De Medina, F. S., Gamez, M. J., Jimenez, I., Jimenez, J., Osuna, J. I., & Zarzuelo, A. (1994). Hypoglycemic activity of juniper “berries.” Planta Medica, 60(3), 197–200. https://doi.org/10.1055/s-2006-959457
  • Debeljak, J., Ferk, P., Čokolič, M., Zavratnik, A., Tavčar Benković, E., Kreft, S., & Štrukelj, B. (2016). Randomised, double blind, cross-over, placebo and active controlled human pharmacodynamic study on the influence of silver fir wood extract (Belinal) on post-prandial glycemic response. Pharmazie, 71(10), 566–569. https://doi.org/10.1691/ph.2016.6658
  • Doan, H. Van, Riyajan, S., Iyara, R., & Chudapongse, N. (2018). Antidiabetic activity, glucose uptake stimulation and α-glucosidase inhibitory effect of Chrysophyllum cainito L. stem bark extract. BMC Complementary and Alternative Medicine, 18(1), 1–10. https://doi.org/10.1186/s12906-018-2328-0
  • Donado-Pestana, C. M., Moura, M. H. C., de Araujo, R. L., de Lima Santiago, G., de Moraes Barros, H. R., & Genovese, M. I. (2018). Polyphenols from Brazilian native Myrtaceae fruits and their potential health benefits against obesity and its associated complications. Current Opinion in Food Science, 19, 42–49. https://doi.org/10.1016/j.cofs.2018.01.001
  • Eddouks, M., Lemhadri, A., & Michel, J. B. (2004). Caraway and caper: Potential anti-hyperglycemic plants in diabetic rats. Journal of Ethnopharmacology, 94(1), 143–148. https://doi.org/10.1016/j.jep.2004.05.006
  • Elyasiyan, U., Nudel, A., Skalka, N., Rozenberg, K., Drori, E., Oppenheimer, R., Rosenzweig, T. (2017). Anti-diabetic activity of aerial parts of Sarcopoterium spinosum. BMC Complementary and Alternative Medicine, 17(1), 1–12. https://doi.org/10.1186/s12906-017-1860-7
  • Erjaee, H., Rajaian, H., Nazifi, S., & Chahardahcherik, M. (2015). The effect of caraway (Carum carvi L.) on the blood antioxidant enzymes and lipid peroxidation in streptozotocin-induced diabetic rats. Comparative Clinical Pathology, 24(5), 1197–1203. https://doi.org/10.1007/s00580-014-2060-1
  • Raimov, R., Fakir, Hüseyin. (2018). Orman Köylülerinin Odun Dışı Orman Ürünlerini Kullanım Olanakları (Eğirdir Yöresi Örneği). Bilge International Journal of Science and Technology Research, 2, 132–144. https://doi.org/10.30516/bilgesci.490659
  • Giancarlo, S., Rosa, L. M., Nadjafi, F., & Francesco, M. (2006). Hypoglycaemic activity of two spices extracts: Rhus coriaria L. and Bunium persicum Boiss. Natural Product Research, 20(9), 882–886. https://doi.org/10.1080/14786410500520186
  • Güder, A., Gür, M., & Engin, M. S. (2015). Antidiabetic and Antioxidant Properties of Bilberry (Vaccinium myrtillus Linn.) Fruit and Their Chemical Composition. Journal of Agricultural Science and Technology, 17(2), 401–414.
  • Hashem Dabaghian, F., Abdollahifard, M., Khalighi Sigarudi, F., Taghavi Shirazi, M., Shojaee, A., Sabet, Z., & Fallah Huseini, H. (2015). Effects of Rosa canina L. fruit on glycemia and lipid profile in type 2 diabetic patients: A randomized, double-blind, placebo-controlled clinical trial. Journal of Medicinal Plants, 14(55), 95–104.
  • Hwang, E. S. (2018). Comparison of antioxidant capacity and α -glucosidase inhibitory activity between bitter melon (Momordica charanti) fruit and leaf extract. Asian Pacific Journal of Tropical Biomedicine, 8(4), 189–193. https://doi.org/10.4103/2221-1691.231280
  • Hwang, J. T., Yang, H. J., Ha, K. C., So, B. O., Choi, E. K., & Chae, S. W. (2015). A randomized, double-blind, placebo-controlled clinical trial to investigate the anti-diabetic effect of Citrus junos Tanaka peel. Journal of Functional Foods, 18, 532–537. https://doi.org/10.1016/j.jff.2015.08.019
  • Hyun, T. K., Ra, J. H., Han, S. H., & Kim, J. S. (2018). Antioxidant, antimicrobial, and antidiabetic activities of crowberry fruits. Indian Journal of Pharmaceutical Sciences, 80(3), 489–495. https://doi.org/10.4172/pharmaceutical-sciences.1000382
  • Ibitoye, O. B., Uwazie, J. N., & Ajiboye, T. O. (2018). Bioactivity-guided isolation of kaempferol as the antidiabetic principle from Cucumis sativus L. fruits. Journal of Food Biochemistry, 42(4), 1–7. https://doi.org/10.1111/jfbc.12479
  • İncegül, Y., Karaboyacı, M., Aydın, E., Özçelik, M. M., Özkan, G. (2018). Production and characterization of natural lemonade powder using β-Cyclodextrin particles. Bilge International Journal of Science and Technology Research, 2, 10–18. https://doi.org/10.30516/bilgesci.480942
  • Jyothsna, D. K. (2017). The Study of Effect of Pomegranate Juice on Type 2 Diabetes Mellietus. IOSR Journal of Dental and Medical Sciences, 16(04), 28–30. https://doi.org/10.9790/0853-1604032830
  • Kaleem, M., Medha, P., Ahmed, Q. U., Asif, M., & Bano, B. (2008). Beneficial effects of Annona squamosa extract in streptozotocin-induced diabetic rats. Singapore Medical Journal, 49(10), 800–804.
  • Kaleem, M., Sheema, Sarmad, H., & Bano, B. (2005). Protective effects of Piper nigrum and Vinca rosea in alloxan induced diabetic rats. Indian Journal of Physiology and Pharmacology, 49(1), 65–71.
  • Kanedi, M. (2019). Fruit Extract of Vanilla (Vanilla planifolia Andrews) Lowers Total Blood Glucose in Alloxan-Induced Hyperglycemic Mice. European Journal of Pharmaceutical and Medical Research, 6(9), 314–316. Retrieved from https://www.researchgate.net/publication/336936580
  • Kelkar, S. M., & Kaklij, G. S. (1997). A simple two-step purification of antidiabetic compounds from Eugenia jambolana fruit-pulp: proteolytic resistance and other properties. Phytomedicine, 3(4), 353–359. https://doi.org/10.1016/s0944-7113(97)80009-8
  • Khaliq, T., Sarfraz, M., & Ashraf, M. A. (2015). Recent progress for the utilization of Curcuma longa, Piper nigrum and Phoenix dactylifera Seeds against type 2 diabetes. West Indian Medical Journal, 64(5), 527–532. https://doi.org/10.7727/wimj.2016.176
  • Khatib, A., Perumal, V., Ahmed, Q., Uzir, B., & Murugesu, S. (2017). Low inhibition of alpha-glucosidase and xanthine oxidase activities of ethanol extract of Momordica charantia fruit. Journal of Pharmaceutical Negative Results, 8(1), 20–24. https://doi.org/10.4103/0976-9234.204906
  • Lerman-garber, I., Ichazo-cerro, S., Zamora-gonzalez, J., & Posadas-romero, C. (1994). Monounsaturated Fat Diet, 17(4), 311–315.
  • Loizzo, M. R., Sicari, V., Tenuta, M. C., Leporini, M. R., Falco, T., Pellicanò, T. M., Tundis, R. (2016). Phytochemicals content, antioxidant and hypoglycaemic activities of commercial nutmeg mace (Myristica fragrans L.) and pimento (Pimenta dioica (L.) Merr.). International Journal of Food Science and Technology, 51(9), 2057–2063. https://doi.org/10.1111/ijfs.13178
  • Mahadeva Rao, U. S. (2018). In vitro free radical scavenging and reducing potentials as well as inhibitory potential on α-amylase and α-glucosidase activities of fruit of Morinda citrifolia (Rubiaceae). Research Journal of Pharmacy and Technology, 11(9), 4135–4142. https://doi.org/10.5958/0974-360X.2018.00760.6
  • Marmouzi, I., Kharbach, M., El Jemli, M., Bouyahya, A., Cherrah, Y., Bouklouze, A., … Faouzi, M. E. A. (2019). Antidiabetic, dermatoprotective, antioxidant and chemical functionalities in Zizyphus lotus leaves and fruits. Industrial Crops and Products, 132(June 2018), 134–139. https://doi.org/10.1016/j.indcrop.2019.02.007
  • Misbah, H., Aziz, A. A., & Aminudin, N. (2013). Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complementary and Alternative Medicine, 13. https://doi.org/10.1186/1472-6882-13-118
  • Mishra, C., Khalid, M. A., Fatima, N., Singh, B., Tripathi, D., Waseem, M., & Mahdi, A. A. (2019). Effects of citral on oxidative stress and hepatic key enzymes of glucose metabolism in streptozotocin/high-fat-diet induced diabetic dyslipidemia rats. Iranian Journal of Basic Medical Sciences, 22(1), 49–57. https://doi.org/10.22038/ijbms.2018.26889.6574
  • Moazezi, Z., & Qujeq, D. (2014). Berberis Fruit Extract and Biochemical Parameters in Patients with Type II Diabetes. Jundishapur, 9(2), 1–4.
  • Mohammadi, S., Kouhsari Montasser, S., & Feshani Monavar, A. (2010). Antidiabetic properties of the ethanolic extract of Rhus coriaria fruits in rats. DARU, Journal of Pharmaceutical Sciences, 18(4), 270–275.
  • Mohammed, A., Victoria Awolola, G., Ibrahim, M. A., Anthony Koorbanally, N., & Islam, M. S. (2019). Oleanolic acid as a potential antidiabetic component of Xylopia aethiopica (Dunal) A. Rich. (Annonaceae) fruit: bioassay guided isolation and molecular docking studies. Natural Product Research, 0(0), 1–4. https://doi.org/10.1080/14786419.2019.1596094
  • Nabi, S. A., Kasetti, R. B., Sirasanagandla, S., Tilak, T. K., Kumar, M. V. J., & Rao, C. A. (2013). Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats. BMC Complementary and Alternative Medicine, 13. https://doi.org/10.1186/1472-6882-13-37
  • Nowicka, P., Wojdyło, A., & Samoticha, J. (2016). Evaluation of phytochemicals, antioxidant capacity, and antidiabetic activity of novel smoothies from selected Prunus fruits. Journal of Functional Foods, 25, 397–407. https://doi.org/10.1016/j.jff.2016.06.024
  • Oboh, G., Isaac, A. T., Akinyemi, A. J., & Ajani, R. A. (2014). Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats’ pancreas by phenolic extracts of avocado pear leaves and fruit. International Journal of Biomedical Science, 10(3), 210–218.
  • Ogurtsova, K., Rocha, J. D., Huang, Y., Linnenkamp, U., & Guariguata, L. (2017). IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 128, 40–50. https://doi.org/10.1016/j.diabres.2017.03.024
  • Orhan, N., Aslan, M., Hoşbaş, S., & Deliorman Orhan, D. (2009). Antidiabetic effect and antioxidant potential of Rosa canina fruits. Pharmacognosy Magazine, 5(20), 309–315. https://doi.org/10.4103/0973-1296.58151
  • Özbek, H. (2002). Foeniculum Vulgare Miller (Rezene) Meyvesi Uçucu Yağının Lethal Doz 50 (LD50) Düzeyi ve Sağlıklı ve Diyabetli Farelerde Hipoglisemik Etkisinin Araştırılması. Van Tıp Dergisi, 9(4), 98–103.
  • Özbek, H., Özgökçe, F., Ceylan, E., & Ta, A. (2002). Secale cereale L. (Çavdar) Meyvesi Dekoksiyon Ekstresinin Sağlıklı ve Diyabetli Farelerde Hipoglisemik Etkisinin Araştırılması, 9(3), 73–77.
  • Park, J. H., Kim, R. Y., & Park, E. (2012). Antidiabetic activity of fruits and vegetables commonly consumed in Korea: Inhibitory potential against α-glucosidase and insulin-like action in vitro. Food Science and Biotechnology, 21(4), 1187–1193. https://doi.org/10.1007/s10068-012-0155-5
  • Pradeepa, S., Subramanian, S., & Kaviyarasan, V. (2013). Biochemical evaluation of antidiabetic properties of Pithecellobium dulce fruits studied in streptozotocin induced experimental diabetic rats. International Journal of Herbal Medicine, 1(4), 21–28. Retrieved from https://pdfs.semanticscholar.org/5b3a/7af005fd589792f943102c710067e78483b6.pdf
  • Putri, N. P., Nursyamsi, K. S., Prayogo, Y. H., Sari, D. R., Budiarti, E., & Batubara, I. (2017). Exploration of Mango Fruits (Mangifera indica) as α-Glucosidase Inhibitors. Biosaintifika: Journal of Biology & Biology Education, 9(3), 554. https://doi.org/10.15294/biosaintifika.v9i3.10516
  • Rashad, H., Metwally, F. M., Ezzat, S. M., Salama, M. M., Hasheesh, A., & Motaal, A. A. (2017). Randomized double-blinded pilot clinical study of the antidiabetic activity of Balanites aegyptiaca and UPLC-ESI,MS-MS identification of its metabolites. Pharmaceutical Biology, 55(1), 1954–1961. https://doi.org/10.1080/13880209.2017.1354388
  • Sancheti, S., Sancheti, S., & Seo, S. Y. (2013). Antidiabetic and antiacetylcholinesterase effects of ethyl acetate fraction of Chaenomeles sinensis (Thouin) Koehne fruits in streptozotocin-induced diabetic rats. Experimental and Toxicologic Pathology, 65(1–2), 55–60. https://doi.org/10.1016/j.etp.2011.05.010
  • Saravanan, S., & Parimelazhagan, T. (2014). In vitro antioxidant, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss. fruit pulp. Food Science and Human Wellness, 3(2), 56–64. https://doi.org/10.1016/j.fshw.2014.05.001
  • Sekar, V., Chakraborty, S., Mani, S., Sali, V. K., & Vasanthi, H. R. (2019). Mangiferin from Mangifera indica fruits reduces post-prandial glucose level by inhibiting α-glucosidase and α-amylase activity. South African Journal of Botany, 120(2017), 129–134. https://doi.org/10.1016/j.sajb.2018.02.001
  • Shidfar, F., Rahideh, S. T., Rajab, A., Khandozi, N., Hosseini, S., Shidfar, S., & Mojab, F. (2014). The effect of Sumac rhuscoriaria L. Powder on serum glycemic status, ApoB, ApoA-I and total antioxidant capacity in type 2 diabetic patients. Iranian Journal of Pharmaceutical Research, 13(4), 1249–1255. https://doi.org/10.22037/ijpr.2014.1585
  • Simamora, A., Santoso, A. W., & Timotius, K. H. (2019). Α-Glucosidase Inhibitory Effect of Fermented Fruit Juice of Morinda citrifolia L and Combination Effect with Acarbose. Current Research in Nutrition and Food Science, 7(1), 218–226. https://doi.org/10.12944/CRNFSJ.7.1.21
  • Smirin, P., Taler, D., Abitbol, G., Brutman-Barazani, T., Kerem, Z., Sampson, S. R., & Rosenzweig, T. (2010). Sarcopoterium spinosum extract as an antidiabetic agent: In vitro and in vivo study. Journal of Ethnopharmacology, 129(1), 10–17. https://doi.org/10.1016/j.jep.2010.02.021
  • Studies, M. (2013). Diversity of Ethno – Medicinal Plants for Diabetes from Bahraich (U.P.) India, 1(1), 13–23.Sukiman, M., Margaretha, J. A., & Irawan, C. (2018). Evaluation of antidiabetes activity of matoa seed extract (Pometia pinnata) using enzym α -glucosidase, 7(5), 10–12.
  • Takahashi, K., Yoshioka, Y., Kato, E., Katsuki, S., Iida, O., Hosokawa, K., & Kawabata, J. (2010). Methyl caffeate as an α-glucosidase inhibitor from Solanum torvum fruits and the activity of related compounds. Bioscience, Biotechnology and Biochemistry, 74(4), 741–745. https://doi.org/10.1271/bbb.90789
  • Thenmozhi, A., Shanmugasundaram, C., & Mahadeva Rao, U. S. (2012). Biochemical evaluation of anti-diabetic Phytomolecule through bioactivity guided solvent fractionation and sub-fractionation from hydro-methanolic (2:3) extract of alligator pear fruit in streptozotocin induced diabetic rats. Journal of Applied Pharmaceutical Science, 2(1), 61–69.
  • Ulutaş Deniz, E., Yeğenoğlu, S., Sözen Şahne, B., & Gençler Özkan, A. M. (2018). Kişniş (Coriandrum sativum L.) üzerine bir derleme. Marmara Pharmaceutical Journal, 22(1), 15–28. https://doi.org/10.12991/mpj.2018.36
  • Vahid, H., Rakhshandeh, H., & Ghorbani, A. (2017). Antidiabetic properties of Capparis spinosa L. and its components. Biomedicine and Pharmacotherapy, 92, 293–302. https://doi.org/10.1016/j.biopha.2017.05.082
  • Wei, M., Chai, W. M., Yang, Q., Wang, R., & Peng, Y. (2017). Novel Insights into the Inhibitory Effect and Mechanism of proanthocyanins from Pyracantha fortuneana Fruit on α-Glucosidase. Journal of Food Science, 82(10), 2260–2268. https://doi.org/10.1111/1750-3841.13816
  • Yeğin, S. Ç., Güder, A., Kılıç, A., & Aydın, H. (2018). New Apple Culture: Investigation of Antioxidant Contents and Antidiabetic Effect of Piraziz Apple (Malus communis L.). Journal of the Institute of Science and Technology, 8(3), 237–242. https://doi.org/10.21597/jist.458644

Review of traditionally consumed antidiabetic fruits in the diet

Year 2019, Volume: 3 , 58 - 76, 31.12.2019
https://doi.org/10.30516/bilgesci.650160

Abstract

According to the WHO's report, the risk of diabetes is
increasing and one in eleven people now have diabetes.  By 2030 the patients with diabetes will
increase in a sharp manner like doubling the number nowadays, and so 90% will
carry type-2 diabetes. To put the blood glucose level under control, in a
stable level with low deviations is the effective way to prevent or delay
type-2 diabetes. Hence, the use of traditional herbal supplements and
fruit-vegetable extracts stands out and commonly used all over the world in
high volumes. The use of traditional herbs has advantage on the lowering the
cost of medication, and one another advantage is the avoiding the side effects
such as
flatulence, diarrhoea, tiredness and upset
stomach
.

The objective of this review was to evaluate in
vitro
and in vivo studies (animal and human) of some antidiabetic
fruits.  Health benefits of the
antidiabetic fruits is well-recognized and traditionally consumption of some
fruits draw attention for the prevention of type-2 diabetes due to their active
hyperglycemic constituents.

The publications cited originate from electronic
databases such as Google Scholar, Pubmed, Web of Science, Scopus,
Wiley-Blackwell and Springer. Scientific name of the fruits, the words antidiabetic,
hypoglycemic and type 2 diabetes were used as keywords for search.







Certain fruits may be used in the management of
diabetes (acarbose-like activity) due to some bioactive compounds of fruits
such as polyphenols and essential oils, which inhibit digestive enzymes or act
as insulin like molecules. This review highlights the benefits of antidiabetic
fruits, and active chemical constituents of them. These fruits have significant
role in the control of type-2 diabetes. 

References

  • Abou El-Soud, N. H., El-Lithy, N. A., El-Saeed, G., Wahby, M. S., Khalil, M. Y., Morsy, F., & Shaffie, N. (2014). Renoprotective effects of Caraway (Carum carvi L.) essential oil in streptozotocin induced diabetic rats. Journal of Applied Pharmaceutical Science, 4(2), 27–33. https://doi.org/10.7324/JAPS.2014.40205
  • Adefegha, S. A., Oboh, G., Oyeleye, S. I., & Ejakpovi, I. (2017). Erectogenic, Antihypertensive, Antidiabetic, Anti-Oxidative Properties and Phenolic Compositions of Almond Fruit (Terminalia catappa L.) Parts (Hull and Drupe) – in vitro. Journal of Food Biochemistry, 41(2), 1–12. https://doi.org/10.1111/jfbc.12309
  • Adefegha, S. A., Oyeleye, S. I., & Oboh, G. (2015). Distribution of Phenolic Contents, Antidiabetic Potentials, Antihypertensive Properties, and Antioxidative Effects of Soursop (Annona muricata L.) Fruit Parts in Vitro. Biochemistry Research International, 2015. https://doi.org/10.1155/2015/347673
  • Al-Gubory, K. H., & Laher, I. (2018). Preface. Nutritional Antioxidant Therapies: Treatments and Perspectives, v–vi. https://doi.org/10.1007/978-3-319-67625-8
  • Ali, R. B., Atangwho, I. J., Kaur, N., Abraika, O. S., Ahmad, M., Mahmud, R., & Asmawi, M. Z. (2012). Bioassay-guided antidiabetic study of Phaleria macrocarpa fruit extract. Molecules, 17(5), 4986–5002. https://doi.org/10.3390/molecules17054986
  • Altun, M. L., Çitoǧlu, G. S., Yilmaz, B. S., Özbek, H., Bayram, I., & CengIz, N. (2010). Hepatoprotective and hypoglycemic activities of Viburnum opulus L. Turkish Journal of Pharmaceutical Sciences, 7(1), 35–48.
  • Andersson, U., Berger, K., Högberg, A., Landin-Olsson, M., & Holm, C. (2012). Effects of rose hip intake on risk markers of type 2 diabetes and cardiovascular disease: A randomized, double-blind, cross-over investigation in obese persons. European Journal of Clinical Nutrition, 66(5), 585–590. https://doi.org/10.1038/ejcn.2011.203
  • Anwer, T., Sharma, M., Khan, G., Iqbal, M., Ali, M. S., Alam, M. S., … Gupta, N. (2013). Rhus coriaria ameliorates insulin resistance in non-insulin-dependent diabetes mellitus (NIDDM) rats. Acta Poloniae Pharmaceutica - Drug Research, 70(5), 861–867.
  • Asgary, S., Rafieiankopaei, M., Sahebkar, A., Shamsi, F., & Goli-malekabadi, N. (2016). Anti-hyperglycemic and anti-hyperlipidemic effects of Vaccinium myrtillus fruit in experimentally induced diabetes (antidiabetic effect of Vaccinium myrtillus fruit). Journal of the Science of Food and Agriculture, 96(3), 764–768. https://doi.org/10.1002/jsfa.7144
  • Asghari, B., Salehi, P., Farimani, M. M., & Ebrahimi, S. N. (2015). α-Glucosidase Inhibitors from Fruits of Rosa canina L. Records of Natural Products, 9(3), 276–283.
  • Atal, S., Atal, S., Vyas, S., & Phadnis, P. (2016). Bio-enhancing effect of Piperine with Metformin on lowering blood glucose level in Alloxan induced diabetic mice. Pharmacognosy Research, 8(1), 56–60. https://doi.org/10.4103/0974-8490.171096
  • Balisteiro, D. M., Araujo, R. L. de, Giacaglia, L. R., & Genovese, M. I. (2017). Effect of clarified Brazilian native fruit juices on postprandial glycemia in healthy subjects. Food Research International, 100(May), 196–203. https://doi.org/10.1016/j.foodres.2017.08.044
  • Buah, E., Boerl, S., & Daun, D. A. N. (2016). Combination of ethanolic extract of α-glucosidase inhibitory activity of Phaleria macrocarpa (Scheff.) Boerl. Fruits and Annona muricata L. Leaves. Majalah Obat Tradisional, 21(2), 63–68. https://doi.org/10.22146/tradmedj.12819
  • Ceylan, E., Özbek, H., & Ağaoğlu, Z. (2003). Cuminum cyminum L. (Kimyon) Meyvesi Uçucu Yağının Median Lethal Doz (LD 50) Düzeyi ve Sağlıklı ve Diyabetli Farelerde Hipoglisemik Etkisinin Araştırılması, 10(2), 29–35.
  • Dabaghian, F. H., Kamalinejad, M., & Shojaei, A. (2012). Presenting anti-diabetic plants in Iranian traditional medicine, 3(November), 70–76. https://doi.org/10.5897/JDE12.004
  • De Medina, F. S., Gamez, M. J., Jimenez, I., Jimenez, J., Osuna, J. I., & Zarzuelo, A. (1994). Hypoglycemic activity of juniper “berries.” Planta Medica, 60(3), 197–200. https://doi.org/10.1055/s-2006-959457
  • Debeljak, J., Ferk, P., Čokolič, M., Zavratnik, A., Tavčar Benković, E., Kreft, S., & Štrukelj, B. (2016). Randomised, double blind, cross-over, placebo and active controlled human pharmacodynamic study on the influence of silver fir wood extract (Belinal) on post-prandial glycemic response. Pharmazie, 71(10), 566–569. https://doi.org/10.1691/ph.2016.6658
  • Doan, H. Van, Riyajan, S., Iyara, R., & Chudapongse, N. (2018). Antidiabetic activity, glucose uptake stimulation and α-glucosidase inhibitory effect of Chrysophyllum cainito L. stem bark extract. BMC Complementary and Alternative Medicine, 18(1), 1–10. https://doi.org/10.1186/s12906-018-2328-0
  • Donado-Pestana, C. M., Moura, M. H. C., de Araujo, R. L., de Lima Santiago, G., de Moraes Barros, H. R., & Genovese, M. I. (2018). Polyphenols from Brazilian native Myrtaceae fruits and their potential health benefits against obesity and its associated complications. Current Opinion in Food Science, 19, 42–49. https://doi.org/10.1016/j.cofs.2018.01.001
  • Eddouks, M., Lemhadri, A., & Michel, J. B. (2004). Caraway and caper: Potential anti-hyperglycemic plants in diabetic rats. Journal of Ethnopharmacology, 94(1), 143–148. https://doi.org/10.1016/j.jep.2004.05.006
  • Elyasiyan, U., Nudel, A., Skalka, N., Rozenberg, K., Drori, E., Oppenheimer, R., Rosenzweig, T. (2017). Anti-diabetic activity of aerial parts of Sarcopoterium spinosum. BMC Complementary and Alternative Medicine, 17(1), 1–12. https://doi.org/10.1186/s12906-017-1860-7
  • Erjaee, H., Rajaian, H., Nazifi, S., & Chahardahcherik, M. (2015). The effect of caraway (Carum carvi L.) on the blood antioxidant enzymes and lipid peroxidation in streptozotocin-induced diabetic rats. Comparative Clinical Pathology, 24(5), 1197–1203. https://doi.org/10.1007/s00580-014-2060-1
  • Raimov, R., Fakir, Hüseyin. (2018). Orman Köylülerinin Odun Dışı Orman Ürünlerini Kullanım Olanakları (Eğirdir Yöresi Örneği). Bilge International Journal of Science and Technology Research, 2, 132–144. https://doi.org/10.30516/bilgesci.490659
  • Giancarlo, S., Rosa, L. M., Nadjafi, F., & Francesco, M. (2006). Hypoglycaemic activity of two spices extracts: Rhus coriaria L. and Bunium persicum Boiss. Natural Product Research, 20(9), 882–886. https://doi.org/10.1080/14786410500520186
  • Güder, A., Gür, M., & Engin, M. S. (2015). Antidiabetic and Antioxidant Properties of Bilberry (Vaccinium myrtillus Linn.) Fruit and Their Chemical Composition. Journal of Agricultural Science and Technology, 17(2), 401–414.
  • Hashem Dabaghian, F., Abdollahifard, M., Khalighi Sigarudi, F., Taghavi Shirazi, M., Shojaee, A., Sabet, Z., & Fallah Huseini, H. (2015). Effects of Rosa canina L. fruit on glycemia and lipid profile in type 2 diabetic patients: A randomized, double-blind, placebo-controlled clinical trial. Journal of Medicinal Plants, 14(55), 95–104.
  • Hwang, E. S. (2018). Comparison of antioxidant capacity and α -glucosidase inhibitory activity between bitter melon (Momordica charanti) fruit and leaf extract. Asian Pacific Journal of Tropical Biomedicine, 8(4), 189–193. https://doi.org/10.4103/2221-1691.231280
  • Hwang, J. T., Yang, H. J., Ha, K. C., So, B. O., Choi, E. K., & Chae, S. W. (2015). A randomized, double-blind, placebo-controlled clinical trial to investigate the anti-diabetic effect of Citrus junos Tanaka peel. Journal of Functional Foods, 18, 532–537. https://doi.org/10.1016/j.jff.2015.08.019
  • Hyun, T. K., Ra, J. H., Han, S. H., & Kim, J. S. (2018). Antioxidant, antimicrobial, and antidiabetic activities of crowberry fruits. Indian Journal of Pharmaceutical Sciences, 80(3), 489–495. https://doi.org/10.4172/pharmaceutical-sciences.1000382
  • Ibitoye, O. B., Uwazie, J. N., & Ajiboye, T. O. (2018). Bioactivity-guided isolation of kaempferol as the antidiabetic principle from Cucumis sativus L. fruits. Journal of Food Biochemistry, 42(4), 1–7. https://doi.org/10.1111/jfbc.12479
  • İncegül, Y., Karaboyacı, M., Aydın, E., Özçelik, M. M., Özkan, G. (2018). Production and characterization of natural lemonade powder using β-Cyclodextrin particles. Bilge International Journal of Science and Technology Research, 2, 10–18. https://doi.org/10.30516/bilgesci.480942
  • Jyothsna, D. K. (2017). The Study of Effect of Pomegranate Juice on Type 2 Diabetes Mellietus. IOSR Journal of Dental and Medical Sciences, 16(04), 28–30. https://doi.org/10.9790/0853-1604032830
  • Kaleem, M., Medha, P., Ahmed, Q. U., Asif, M., & Bano, B. (2008). Beneficial effects of Annona squamosa extract in streptozotocin-induced diabetic rats. Singapore Medical Journal, 49(10), 800–804.
  • Kaleem, M., Sheema, Sarmad, H., & Bano, B. (2005). Protective effects of Piper nigrum and Vinca rosea in alloxan induced diabetic rats. Indian Journal of Physiology and Pharmacology, 49(1), 65–71.
  • Kanedi, M. (2019). Fruit Extract of Vanilla (Vanilla planifolia Andrews) Lowers Total Blood Glucose in Alloxan-Induced Hyperglycemic Mice. European Journal of Pharmaceutical and Medical Research, 6(9), 314–316. Retrieved from https://www.researchgate.net/publication/336936580
  • Kelkar, S. M., & Kaklij, G. S. (1997). A simple two-step purification of antidiabetic compounds from Eugenia jambolana fruit-pulp: proteolytic resistance and other properties. Phytomedicine, 3(4), 353–359. https://doi.org/10.1016/s0944-7113(97)80009-8
  • Khaliq, T., Sarfraz, M., & Ashraf, M. A. (2015). Recent progress for the utilization of Curcuma longa, Piper nigrum and Phoenix dactylifera Seeds against type 2 diabetes. West Indian Medical Journal, 64(5), 527–532. https://doi.org/10.7727/wimj.2016.176
  • Khatib, A., Perumal, V., Ahmed, Q., Uzir, B., & Murugesu, S. (2017). Low inhibition of alpha-glucosidase and xanthine oxidase activities of ethanol extract of Momordica charantia fruit. Journal of Pharmaceutical Negative Results, 8(1), 20–24. https://doi.org/10.4103/0976-9234.204906
  • Lerman-garber, I., Ichazo-cerro, S., Zamora-gonzalez, J., & Posadas-romero, C. (1994). Monounsaturated Fat Diet, 17(4), 311–315.
  • Loizzo, M. R., Sicari, V., Tenuta, M. C., Leporini, M. R., Falco, T., Pellicanò, T. M., Tundis, R. (2016). Phytochemicals content, antioxidant and hypoglycaemic activities of commercial nutmeg mace (Myristica fragrans L.) and pimento (Pimenta dioica (L.) Merr.). International Journal of Food Science and Technology, 51(9), 2057–2063. https://doi.org/10.1111/ijfs.13178
  • Mahadeva Rao, U. S. (2018). In vitro free radical scavenging and reducing potentials as well as inhibitory potential on α-amylase and α-glucosidase activities of fruit of Morinda citrifolia (Rubiaceae). Research Journal of Pharmacy and Technology, 11(9), 4135–4142. https://doi.org/10.5958/0974-360X.2018.00760.6
  • Marmouzi, I., Kharbach, M., El Jemli, M., Bouyahya, A., Cherrah, Y., Bouklouze, A., … Faouzi, M. E. A. (2019). Antidiabetic, dermatoprotective, antioxidant and chemical functionalities in Zizyphus lotus leaves and fruits. Industrial Crops and Products, 132(June 2018), 134–139. https://doi.org/10.1016/j.indcrop.2019.02.007
  • Misbah, H., Aziz, A. A., & Aminudin, N. (2013). Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complementary and Alternative Medicine, 13. https://doi.org/10.1186/1472-6882-13-118
  • Mishra, C., Khalid, M. A., Fatima, N., Singh, B., Tripathi, D., Waseem, M., & Mahdi, A. A. (2019). Effects of citral on oxidative stress and hepatic key enzymes of glucose metabolism in streptozotocin/high-fat-diet induced diabetic dyslipidemia rats. Iranian Journal of Basic Medical Sciences, 22(1), 49–57. https://doi.org/10.22038/ijbms.2018.26889.6574
  • Moazezi, Z., & Qujeq, D. (2014). Berberis Fruit Extract and Biochemical Parameters in Patients with Type II Diabetes. Jundishapur, 9(2), 1–4.
  • Mohammadi, S., Kouhsari Montasser, S., & Feshani Monavar, A. (2010). Antidiabetic properties of the ethanolic extract of Rhus coriaria fruits in rats. DARU, Journal of Pharmaceutical Sciences, 18(4), 270–275.
  • Mohammed, A., Victoria Awolola, G., Ibrahim, M. A., Anthony Koorbanally, N., & Islam, M. S. (2019). Oleanolic acid as a potential antidiabetic component of Xylopia aethiopica (Dunal) A. Rich. (Annonaceae) fruit: bioassay guided isolation and molecular docking studies. Natural Product Research, 0(0), 1–4. https://doi.org/10.1080/14786419.2019.1596094
  • Nabi, S. A., Kasetti, R. B., Sirasanagandla, S., Tilak, T. K., Kumar, M. V. J., & Rao, C. A. (2013). Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats. BMC Complementary and Alternative Medicine, 13. https://doi.org/10.1186/1472-6882-13-37
  • Nowicka, P., Wojdyło, A., & Samoticha, J. (2016). Evaluation of phytochemicals, antioxidant capacity, and antidiabetic activity of novel smoothies from selected Prunus fruits. Journal of Functional Foods, 25, 397–407. https://doi.org/10.1016/j.jff.2016.06.024
  • Oboh, G., Isaac, A. T., Akinyemi, A. J., & Ajani, R. A. (2014). Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats’ pancreas by phenolic extracts of avocado pear leaves and fruit. International Journal of Biomedical Science, 10(3), 210–218.
  • Ogurtsova, K., Rocha, J. D., Huang, Y., Linnenkamp, U., & Guariguata, L. (2017). IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 128, 40–50. https://doi.org/10.1016/j.diabres.2017.03.024
  • Orhan, N., Aslan, M., Hoşbaş, S., & Deliorman Orhan, D. (2009). Antidiabetic effect and antioxidant potential of Rosa canina fruits. Pharmacognosy Magazine, 5(20), 309–315. https://doi.org/10.4103/0973-1296.58151
  • Özbek, H. (2002). Foeniculum Vulgare Miller (Rezene) Meyvesi Uçucu Yağının Lethal Doz 50 (LD50) Düzeyi ve Sağlıklı ve Diyabetli Farelerde Hipoglisemik Etkisinin Araştırılması. Van Tıp Dergisi, 9(4), 98–103.
  • Özbek, H., Özgökçe, F., Ceylan, E., & Ta, A. (2002). Secale cereale L. (Çavdar) Meyvesi Dekoksiyon Ekstresinin Sağlıklı ve Diyabetli Farelerde Hipoglisemik Etkisinin Araştırılması, 9(3), 73–77.
  • Park, J. H., Kim, R. Y., & Park, E. (2012). Antidiabetic activity of fruits and vegetables commonly consumed in Korea: Inhibitory potential against α-glucosidase and insulin-like action in vitro. Food Science and Biotechnology, 21(4), 1187–1193. https://doi.org/10.1007/s10068-012-0155-5
  • Pradeepa, S., Subramanian, S., & Kaviyarasan, V. (2013). Biochemical evaluation of antidiabetic properties of Pithecellobium dulce fruits studied in streptozotocin induced experimental diabetic rats. International Journal of Herbal Medicine, 1(4), 21–28. Retrieved from https://pdfs.semanticscholar.org/5b3a/7af005fd589792f943102c710067e78483b6.pdf
  • Putri, N. P., Nursyamsi, K. S., Prayogo, Y. H., Sari, D. R., Budiarti, E., & Batubara, I. (2017). Exploration of Mango Fruits (Mangifera indica) as α-Glucosidase Inhibitors. Biosaintifika: Journal of Biology & Biology Education, 9(3), 554. https://doi.org/10.15294/biosaintifika.v9i3.10516
  • Rashad, H., Metwally, F. M., Ezzat, S. M., Salama, M. M., Hasheesh, A., & Motaal, A. A. (2017). Randomized double-blinded pilot clinical study of the antidiabetic activity of Balanites aegyptiaca and UPLC-ESI,MS-MS identification of its metabolites. Pharmaceutical Biology, 55(1), 1954–1961. https://doi.org/10.1080/13880209.2017.1354388
  • Sancheti, S., Sancheti, S., & Seo, S. Y. (2013). Antidiabetic and antiacetylcholinesterase effects of ethyl acetate fraction of Chaenomeles sinensis (Thouin) Koehne fruits in streptozotocin-induced diabetic rats. Experimental and Toxicologic Pathology, 65(1–2), 55–60. https://doi.org/10.1016/j.etp.2011.05.010
  • Saravanan, S., & Parimelazhagan, T. (2014). In vitro antioxidant, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss. fruit pulp. Food Science and Human Wellness, 3(2), 56–64. https://doi.org/10.1016/j.fshw.2014.05.001
  • Sekar, V., Chakraborty, S., Mani, S., Sali, V. K., & Vasanthi, H. R. (2019). Mangiferin from Mangifera indica fruits reduces post-prandial glucose level by inhibiting α-glucosidase and α-amylase activity. South African Journal of Botany, 120(2017), 129–134. https://doi.org/10.1016/j.sajb.2018.02.001
  • Shidfar, F., Rahideh, S. T., Rajab, A., Khandozi, N., Hosseini, S., Shidfar, S., & Mojab, F. (2014). The effect of Sumac rhuscoriaria L. Powder on serum glycemic status, ApoB, ApoA-I and total antioxidant capacity in type 2 diabetic patients. Iranian Journal of Pharmaceutical Research, 13(4), 1249–1255. https://doi.org/10.22037/ijpr.2014.1585
  • Simamora, A., Santoso, A. W., & Timotius, K. H. (2019). Α-Glucosidase Inhibitory Effect of Fermented Fruit Juice of Morinda citrifolia L and Combination Effect with Acarbose. Current Research in Nutrition and Food Science, 7(1), 218–226. https://doi.org/10.12944/CRNFSJ.7.1.21
  • Smirin, P., Taler, D., Abitbol, G., Brutman-Barazani, T., Kerem, Z., Sampson, S. R., & Rosenzweig, T. (2010). Sarcopoterium spinosum extract as an antidiabetic agent: In vitro and in vivo study. Journal of Ethnopharmacology, 129(1), 10–17. https://doi.org/10.1016/j.jep.2010.02.021
  • Studies, M. (2013). Diversity of Ethno – Medicinal Plants for Diabetes from Bahraich (U.P.) India, 1(1), 13–23.Sukiman, M., Margaretha, J. A., & Irawan, C. (2018). Evaluation of antidiabetes activity of matoa seed extract (Pometia pinnata) using enzym α -glucosidase, 7(5), 10–12.
  • Takahashi, K., Yoshioka, Y., Kato, E., Katsuki, S., Iida, O., Hosokawa, K., & Kawabata, J. (2010). Methyl caffeate as an α-glucosidase inhibitor from Solanum torvum fruits and the activity of related compounds. Bioscience, Biotechnology and Biochemistry, 74(4), 741–745. https://doi.org/10.1271/bbb.90789
  • Thenmozhi, A., Shanmugasundaram, C., & Mahadeva Rao, U. S. (2012). Biochemical evaluation of anti-diabetic Phytomolecule through bioactivity guided solvent fractionation and sub-fractionation from hydro-methanolic (2:3) extract of alligator pear fruit in streptozotocin induced diabetic rats. Journal of Applied Pharmaceutical Science, 2(1), 61–69.
  • Ulutaş Deniz, E., Yeğenoğlu, S., Sözen Şahne, B., & Gençler Özkan, A. M. (2018). Kişniş (Coriandrum sativum L.) üzerine bir derleme. Marmara Pharmaceutical Journal, 22(1), 15–28. https://doi.org/10.12991/mpj.2018.36
  • Vahid, H., Rakhshandeh, H., & Ghorbani, A. (2017). Antidiabetic properties of Capparis spinosa L. and its components. Biomedicine and Pharmacotherapy, 92, 293–302. https://doi.org/10.1016/j.biopha.2017.05.082
  • Wei, M., Chai, W. M., Yang, Q., Wang, R., & Peng, Y. (2017). Novel Insights into the Inhibitory Effect and Mechanism of proanthocyanins from Pyracantha fortuneana Fruit on α-Glucosidase. Journal of Food Science, 82(10), 2260–2268. https://doi.org/10.1111/1750-3841.13816
  • Yeğin, S. Ç., Güder, A., Kılıç, A., & Aydın, H. (2018). New Apple Culture: Investigation of Antioxidant Contents and Antidiabetic Effect of Piraziz Apple (Malus communis L.). Journal of the Institute of Science and Technology, 8(3), 237–242. https://doi.org/10.21597/jist.458644
There are 71 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ebru Aydın

Publication Date December 31, 2019
Acceptance Date December 23, 2019
Published in Issue Year 2019 Volume: 3

Cite

APA Aydın, E. (2019). Review of traditionally consumed antidiabetic fruits in the diet. Bilge International Journal of Science and Technology Research, 3, 58-76. https://doi.org/10.30516/bilgesci.650160