Physical, Mechanical and Thermal Properties of Red Pine Wood-Gypsum Particleboard
Year 2021,
Volume: 5 Issue: 2, 139 - 145, 30.09.2021
Ali İhsan Kaya
,
Ömer Ümit Yalçın
,
Yasemin Türker
Abstract
Physical, mechanical and some thermal properties of gypsum-wood mixture particleboards were analyzed for specimens which were prepared in different proportions previously conditioned at 23 ˚C and 65% relative humidity. Water absorbtion (WA) and thickness swelling (TS) properties were measured after soaked in water for 24 hours. Furthermore, the increment of wood particle was increased the water absobtion values around 28.5 % and 2.1% thickness swelling values, respectively. However, the reduction of gypsum ratio was negatively effected the mechanical resistance of the boards. The highest MOR, MOE and internal bond (IB) values were observed in the C1 code board with 4.73 MPa, 27.04 MPa and 0.97 N/mm2 respectively. The thermal conductivty of wood-gypsum boards were ranged from 0.7404-0.5021 W/mK. The highest density was found in C1 type board as 1.333 kg/m³ and also the highest thermal coductivity was observed at the same sample. Besides, the highest surface temprature which was passed to opposite side of flame source, was found in C5 as 141.7 oC after 300 seconds. However, the lowest value was observed in C1 type board as 93.3 ˚C after 300 seconds.
References
- Amiandamhen, S.O., Meincken, M., Tyhoda, L. (2016). Magnesium based phosphate cement binder for composite panels: Aresponse surface methodology for optimisation of processingvariables in boards produced from agricultural and wood processingindustrial residues. Industrial Crops and Products, 94, 746-754.
- Ashori, A., Tabarsa, T., Azizi, K., and Mirzabeygi, R. (2011). Wood–wool cement board using mixture of eucalypt and poplar. Industrial Crops and Products, 34, 1146- 1149.
- Bekhta, P. and Dobrowolska, E. (2006). Thermal properties of wood-gypsum boards. Holz als Roh- und Werkstoff, 64, 427-428.
- Beram, A. and Yasar, S. (2020). Performance of brutian pine (pinus brutia ten.) fibers modified with low concentration naoh solutions in fiberboard production. Fresenius Environmental Bulletin, 29(1), 70-78.
- Beram, A., Yaşar, S. and Aytaç, U. Z. (2021). Kızılçam (Pinus brutia Ten.) Yongalarına Uygulanan Isıl İşlemin Üretilen Levhaların Formaldehit Emisyonu ve Yanma Özellikleri Üzerine Etkileri. Bilge International Journal of Science and Technology Research, 5(1), 86-90.
- Binici, H., Orhan Aksogan, O., and Demirhan, C., 2016. Mechanical, thermal and acoustical characterizations of an insulationcomposite made of bio-based materials. Sustainable Cities and Society, 20, 17-26.
- Cabrera, J.G. Lynsdale, C.J. (1996). The effect of super-plasticisers on the hydration of normal Portland cement (in Italian). L’industria Italiana del Cemento, 66 (712), 532-541.
- Cramer, S. M., Friday, O. M., White, R.H., Sriprutkiat, G. (2003). Mechanical Properties of Gypsum Board at Elevated Temperatures. Proceedings of the Fire and Materials Conference. San Francisco, CA, USA. London: Interscience Communications Limited, c2003: pp 33-42.
- El-Juhany, L. I., I. M. Aref and A. O. Wakeel (2003). Evaluation of using some available lignocellulosic agricultural residues in manufacturing wood-cement boards in Saudi Arabia. In:the Proceedings of the International Conference on Date Palm, pp 281-291.
- Gao, M, Niu, J., Yang, R. (2006) Synergism of gup and boric acid characterized by cone calorimetry and thermogravimetry. J Fire Sci, 24(6), 499 - 511.
- Han, FQ., Tan, X., Zhao, FQ. (2017). Modification of Wood Fiber for Use in Cement Board, 1st International Workshop on Materials Science and Mechanical Engineering, 281(1), 012020.
- Herrera, R.E., and Cloutier, A. (2010). Physical and mechanical properties of gypsum particleboard reinforced with Portland cement. Eur. J. Wood Prod. European Journal of Wood and Wood Products, 69(2), 247-254.
- Icel, B. and Beram, A. (2017). Effects of industrial heat treatment on some physical and mechanical properties of iroko wood. Drvna industrija: Znanstveni časopis za pitanja drvne tehnologije, 68(3), 229-2369.
- Kang, Y., Chang, S.J., Kim, S. (2018). Hygrothermal behavior evaluation of walls improving heat and moisture performance on gypsum boards by adding porous materials. Energy & Buildings, 165, 431–439.
- Kim, H.S., Kim, S., Kim, H.J., Yang, H.S. (2006). Thermal properties of bio-flour-filled polyoefin com¬posites with different compatibilizing agent type and content. Thermochim Acta, 451(1-2), 181-188.
- Kolaitis, D. I., Asimakopoulou, E. K., and Founti, M.A. (2014). Fire protection of light and massive timber elements using gypsum plasterboards and wood based panels: A large-scale compartment fire test. Construction and Building Materials, 73, 163–170.
- Martias, C., Joliff, Y., and Favotto, C. (2014). Effects of the addition of glass fibers, mica and vermiculite on the mechanical properties of a gypsum-based composite at room temperature and during a fire test. Composites: Part B, 62, 37–53.
- Nasser, R.A., Salem, M.Z.M., Al-Mefarrej, H.A., and Aref, I.M. (2016). Use of tree pruning wastes for manufacturing of wood reinforced cement composites Cement and Concret Composites, 72, 246-256.
- Regulska, K., and Repelewicz, A. (2019). Properties of gypsum composites with sawdust. E3S Web of Conferences, 97, 02037.
- Shafiq, N., Nuruddin, M.F. (2010). Degree of hydration of OPC and OPC/FA pastes dried in different relative humidity. J Concr Res Lett, 1(3), 81-89.
- Sophia, M., Sakthieswaran, N. (2016). Gypsum as a Construction Material- A Review of Recent Developments IJIRST –International Journal for Innovative Research in Science & Technology, 2(12), 1-9.
- Yalcın, O.U. Investigation of performance properties of panels produced from some lignocellulosic sources with mineral (Dolomite and olivine) additives. 2018. 184 p. PhD thesis Isparta University of Applied Sciences, Isparta.
- Yel, H., Cavdar, A. D., Torun, S. B. (2020). Effect of press temperature on some properties of cement bonded particleboard. Maderas. Ciencia y tecnología, 22(1), 83-92.
Kızılçam Odun-Alçı Yonga Levhanın Fiziksel, Mekanik ve Termal Özellikleri
Year 2021,
Volume: 5 Issue: 2, 139 - 145, 30.09.2021
Ali İhsan Kaya
,
Ömer Ümit Yalçın
,
Yasemin Türker
Abstract
Farklı oranlarda hazırlanan, 23 ° C'de ve % 65 bağıl nemde iklimlendirilen numuneler için alçı-ahşap karışımı yonga levhaların fiziksel, mekanik ve bazı ısıl özellikleri analiz edilmiştir. 24 saat suya batırıldıktan sonra su emme (WA) ve kalınlık şişme (TS) özellikleri ölçülmüştür. Ayrıca, odun katkısının artışı, su emme değerlerini sırasıyla %28.5 ve kalınlık şişme değerlerini %2,1 civarında artırmıştır. Ancak alçı oranının azalması levhaların mekanik direncini olumsuz yönde etkilemiştir. En yüksek MOR, MOE ve IB değerleri sırasıyla 4.73 MPa, 27.04 MPa ve 0.97 N / mm2 ile C1 kodlu levhada gözlenmiştir. Ahşap alçı levhaların ısıl iletkenliği 0.7404-0.5021 W/mK arasında değişmiştir. En yüksek yoğunluk 1.333 kg/m³ olarak C1 tipi levhada bulunmuş ve en yüksek ısıl iletkenlik aynı numunede gözlenmiştir. Ayrıca alev kaynağının karşı tarafına geçen en yüksek yüzey sıcaklığı 300 saniye sonra 141.7 °C olarak C5'te bulunmuştur. Ancak en düşük değer 300 saniye sonra 93.3 ˚C olarak C1 tipi levhada gözlenmiştir.
References
- Amiandamhen, S.O., Meincken, M., Tyhoda, L. (2016). Magnesium based phosphate cement binder for composite panels: Aresponse surface methodology for optimisation of processingvariables in boards produced from agricultural and wood processingindustrial residues. Industrial Crops and Products, 94, 746-754.
- Ashori, A., Tabarsa, T., Azizi, K., and Mirzabeygi, R. (2011). Wood–wool cement board using mixture of eucalypt and poplar. Industrial Crops and Products, 34, 1146- 1149.
- Bekhta, P. and Dobrowolska, E. (2006). Thermal properties of wood-gypsum boards. Holz als Roh- und Werkstoff, 64, 427-428.
- Beram, A. and Yasar, S. (2020). Performance of brutian pine (pinus brutia ten.) fibers modified with low concentration naoh solutions in fiberboard production. Fresenius Environmental Bulletin, 29(1), 70-78.
- Beram, A., Yaşar, S. and Aytaç, U. Z. (2021). Kızılçam (Pinus brutia Ten.) Yongalarına Uygulanan Isıl İşlemin Üretilen Levhaların Formaldehit Emisyonu ve Yanma Özellikleri Üzerine Etkileri. Bilge International Journal of Science and Technology Research, 5(1), 86-90.
- Binici, H., Orhan Aksogan, O., and Demirhan, C., 2016. Mechanical, thermal and acoustical characterizations of an insulationcomposite made of bio-based materials. Sustainable Cities and Society, 20, 17-26.
- Cabrera, J.G. Lynsdale, C.J. (1996). The effect of super-plasticisers on the hydration of normal Portland cement (in Italian). L’industria Italiana del Cemento, 66 (712), 532-541.
- Cramer, S. M., Friday, O. M., White, R.H., Sriprutkiat, G. (2003). Mechanical Properties of Gypsum Board at Elevated Temperatures. Proceedings of the Fire and Materials Conference. San Francisco, CA, USA. London: Interscience Communications Limited, c2003: pp 33-42.
- El-Juhany, L. I., I. M. Aref and A. O. Wakeel (2003). Evaluation of using some available lignocellulosic agricultural residues in manufacturing wood-cement boards in Saudi Arabia. In:the Proceedings of the International Conference on Date Palm, pp 281-291.
- Gao, M, Niu, J., Yang, R. (2006) Synergism of gup and boric acid characterized by cone calorimetry and thermogravimetry. J Fire Sci, 24(6), 499 - 511.
- Han, FQ., Tan, X., Zhao, FQ. (2017). Modification of Wood Fiber for Use in Cement Board, 1st International Workshop on Materials Science and Mechanical Engineering, 281(1), 012020.
- Herrera, R.E., and Cloutier, A. (2010). Physical and mechanical properties of gypsum particleboard reinforced with Portland cement. Eur. J. Wood Prod. European Journal of Wood and Wood Products, 69(2), 247-254.
- Icel, B. and Beram, A. (2017). Effects of industrial heat treatment on some physical and mechanical properties of iroko wood. Drvna industrija: Znanstveni časopis za pitanja drvne tehnologije, 68(3), 229-2369.
- Kang, Y., Chang, S.J., Kim, S. (2018). Hygrothermal behavior evaluation of walls improving heat and moisture performance on gypsum boards by adding porous materials. Energy & Buildings, 165, 431–439.
- Kim, H.S., Kim, S., Kim, H.J., Yang, H.S. (2006). Thermal properties of bio-flour-filled polyoefin com¬posites with different compatibilizing agent type and content. Thermochim Acta, 451(1-2), 181-188.
- Kolaitis, D. I., Asimakopoulou, E. K., and Founti, M.A. (2014). Fire protection of light and massive timber elements using gypsum plasterboards and wood based panels: A large-scale compartment fire test. Construction and Building Materials, 73, 163–170.
- Martias, C., Joliff, Y., and Favotto, C. (2014). Effects of the addition of glass fibers, mica and vermiculite on the mechanical properties of a gypsum-based composite at room temperature and during a fire test. Composites: Part B, 62, 37–53.
- Nasser, R.A., Salem, M.Z.M., Al-Mefarrej, H.A., and Aref, I.M. (2016). Use of tree pruning wastes for manufacturing of wood reinforced cement composites Cement and Concret Composites, 72, 246-256.
- Regulska, K., and Repelewicz, A. (2019). Properties of gypsum composites with sawdust. E3S Web of Conferences, 97, 02037.
- Shafiq, N., Nuruddin, M.F. (2010). Degree of hydration of OPC and OPC/FA pastes dried in different relative humidity. J Concr Res Lett, 1(3), 81-89.
- Sophia, M., Sakthieswaran, N. (2016). Gypsum as a Construction Material- A Review of Recent Developments IJIRST –International Journal for Innovative Research in Science & Technology, 2(12), 1-9.
- Yalcın, O.U. Investigation of performance properties of panels produced from some lignocellulosic sources with mineral (Dolomite and olivine) additives. 2018. 184 p. PhD thesis Isparta University of Applied Sciences, Isparta.
- Yel, H., Cavdar, A. D., Torun, S. B. (2020). Effect of press temperature on some properties of cement bonded particleboard. Maderas. Ciencia y tecnología, 22(1), 83-92.