Research Article
BibTex RIS Cite

Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects

Year 2023, Volume: 7 Issue: 2, 176 - 186, 31.12.2023
https://doi.org/10.47897/bilmes.1397666

Abstract

Raw materials are the necessary building blocks for the functioning of the country's economy and industries. It is inevitable for countries to direct their economic policies towards sustainability within the scope of their green and digital transformation efforts. The fact that green and digital transformation are among the most driving forces in achieving sustainable development also reveals the criticality of the raw materials to be used in the technologies required for this transformation. The positive effects of raw materials come to the fore in many areas such as the use of carbon neutral and green technologies required for climate and energy targets, the design of sustainable cities, and healthy and quality life. However, it is necessary to discuss the dilemma created by the negative environmental effects of mining activities undertaken to extract the raw materials necessary to achieve sustainability goals. Therefore, in this study, the positive or negative effects of raw materials on the Sustainable Development Goals (SDGs), sustainable performance criteria that can be used in the evaluation of raw materials, are examined with strategic planning tools. Policies, measures, and investments regarding the performance measures achieved in Turkey are investigated. At the end of the study, the strengths, weaknesses, threats, and opportunities of some raw materials in terms of targets are evaluated. Additionally, through analysis of critical success factors, numerical inputs that can be used for researchers conducting data studies in this field are presented.

References

  • [1] Michal, C., & Zuzana, Š. (2021). Critical raw materials as a part of sustainable development. Multidiszciplináris Tudományok, 11(5), 12-23.
  • [2] Tzachor, A., Sabri, S., Richards, C. E., Rajabifard, A., & Acuto, M. (2022). Potential and limitations of digital twins to achieve the sustainable development goals. Nature Sustainability, 5(10), 822-829.
  • [3] Obaideen, K., Abdelkareem, M. A., Wilberforce, T., Elsaid, K., Sayed, E. T., Maghrabie, H. M., & Olabi, A. G. (2022). Biogas role in achievement of the sustainable development goals: Evaluation, Challenges, and Guidelines. Journal of the Taiwan Institute of Chemical Engineers, 131, 104207.
  • [4] Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., ... & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature communications, 11(1), 1-10.
  • [5] Mehmood, U. (2021). Contribution of renewable energy towards environmental quality: The role of education to achieve sustainable development goals in G11 countries. Renewable Energy, 178, 600-607.
  • [6] Tomazinakis, S., Valakas, G., Gaki, A., Damigos, D., & Adam, K. (2021). The Significance of SDGs for the Raw Materials Sector: A Stakeholders’ Approach in Three ESEE Countries. Materials Proceedings, 5(1), 48.
  • [7] Mancini, L., Vidal Legaz, B., Vizzarri, M., Wittmer, D., Grassi, G., & Pennington, D. (2019). Mapping the role of raw materials in sustainable development goals. A Preliminary Analysis of Links, Monitoring Indicators, and Related Policy Initiatives, 3, 1-9.
  • [8] da Silva Lima, L., Cocquyt, L., Mancini, L., Cadena, E., & Dewulf, J. (2023). The role of raw materials to achieve the Sustainable Development Goals: Tracing the risks and positive contributions of cobalt along the lithium‐ion battery supply chain. Journal of Industrial Ecology, 27(3), 777-794.
  • [9] Maxwell, S. L., Milner-Gulland, E. J., Jones, J. P., Knight, A. T., Bunnefeld, N., Nuno, A., ... & Rhodes, J. R. (2015). Being smart about SMART environmental targets. Science, 347(6226), 1075-1076.
  • [10] Baranzelli, C., Blengini, G. A., Josa, S. O., & Lavalle, C. (2022). EU–Africa Strategic Corridors and critical raw materials: two-way approach to regional development and security of supply. International Journal of Mining, Reclamation and Environment, 36(9), 607-623.
  • [11] Wongnaa, C. A., & Awunyo-Vitor, D. (2018). Achieving sustainable development goals on no poverty and zero hunger: Does technical efficiency of Ghana’s maize farmers matter? Agriculture & Food Security, 7(1), 1-13.
  • [12] Khanal, U., Wilson, C., Rahman, S., Lee, B. L., & Hoang, V. N. (2021). Smallholder farmers’ adaptation to climate change and its potential contribution to UN’s sustainable development goals of zero hunger and no poverty. Journal of Cleaner Production, 281, 124999.
  • [13] McLaughlin, M. J., Parker, D. R., & Clarke, J. M. (1999). Metals and micronutrients–food safety issues. Field crops research, 60(1-2), 143-163.
  • [14] Nieder, R., Benbi, D. K., Reichl, F. X., Nieder, R., Benbi, D. K., & Reichl, F. X. (2018). Microelements and their role in human health. Soil components and human health, 317-374.
  • [15] Torreggiani, A., Zanelli, A., Degli Esposti, A., Polo, E., Dambruoso, P., Lapinska-Viola, R., ... & Benvenuti, E. (2021). How to prepare future generations for the challenges in the raw materials sector. In Rare Metal Technology 2021 (pp. 277-287). Springer International Publishing.
  • [16] Hofmann, M., Hofmann, H., Hagelüken, C., & Hool, A. (2018). Critical raw materials: A perspective from the materials science community. Sustainable Materials and Technologies, 17, e00074.
  • [17] Hartlieb, P., Jorda Bordehore, L., Regueiro y González-Barros, M., Correia, V., & Vidovic, J. (2020). A comprehensive skills catalogue for the raw materials sector and the structure of raw materials education worldwide. Mining Technology, 129(2), 82-94.
  • [18] Rietveld, E., Bastein, T., van Leeuwen, T., Wieclawska, S., Bonenkamp, N., Peck, D., ... & Poitiers, N. (2022). Strengthening the security of supply of products containing Critical Raw Materials for the green transition and decarbonisation. European Parliament.
  • [19] Pavel, C. C., Marmier, A., Tzimas, E., Schleicher, T., Schüler, D., Buchert, M., & Blagoeva, D. (2016). Critical raw materials in lighting applications: Substitution opportunities and implication on their demand. physica status solidi (a), 213(11), 2937-2946.
  • [20] Gotti, F. (2022). Critical raw materials for wind and solar PV energy applications: state of the art, future opportunities and critical issues.
  • [21] Wentker, M., Greenwood, M., Asaba, M. C., & Leker, J. (2019). A raw material criticality and environmental impact assessment of state-of-the-art and post-lithium-ion cathode technologies. Journal of Energy Storage, 26, 101022.
  • [22] Polat, E. G., Yücesan, M., & Gül, M. (2023). A comparative framework for criticality assessment of strategic raw materials in Turkey. Resources Policy, 82, 103511.
  • [23] Hennebel, T., Boon, N., Maes, S., & Lenz, M. (2015). Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New biotechnology, 32(1), 121-127.
  • [24] Konuk, A., Gürsoy, Y. H., & Hakan, A. K. (2021). Doğal grafit ihracatı yoğunlaşmasının ekonomik büyüme üzerindeki etkisi. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 29(3), 316-327.
  • [25] Hofmann, M., Hofmann, H., Hagelüken, C., & Hool, A. (2018). Critical raw materials: A perspective from the materials science community. Sustainable Materials and Technologies, 17, e00074.
  • [26] Ghamisi, P., Shahi, K. R., Duan, P., Rasti, B., Lorenz, S., Booysen, R., ... & Gloaguen, R. (2021). The potential of machine learning for a more responsible sourcing of critical raw materials. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8971-8988.
  • [27] Jarosiński, A., Żelazny, S., & Cholewa, M. (2016). Raw Materials and Possibilities of their obtaining in Poland. Inżynieria Mineralna, 17(1), 233-240.
  • [28] Michal, C., & Zuzana, Š. (2021). Critical raw materials as a part of sustainable development. Multidiszciplináris Tudományok, 11(5), 12-23.
  • [29] Zhang, S. E., Bourdeau, J. E., Nwaila, G. T., & Ghorbani, Y. (2023). Emerging criticality: Unraveling shifting dynamics of the EU's critical raw materials and their implications on Canada and South Africa. Resources Policy, 86, 104247.
  • [30] Mancini, L., & Sala, S. (2018). Social impact assessment in the mining sector: Review and comparison of indicators frameworks. Resources Policy, 57, 98-111.
  • [31] Foresta, D. L., & Cerasuolo, A. (2021). Critical raw materials and cities: A literature review. Journal of Urban Regeneration & Renewal, 15(1), 71-82.
  • [32] Radwanek-Bąk, B. (2011). Mineral resources of Poland in the aspect of the assessment of critical minerals to the European Union Economy. Gospodarka Surowcami Mineralnymi, (1).
  • [33] Pommeret, A., Ricci, F., & Schubert, K. (2022). Critical raw materials for the energy transition. European Economic Review, 141, 103991.
  • [34] Domaracka, L., Matuskova, S., Tausova, M., Senova, A., & Kowal, B. (2022). Efficient Use of Critical Raw Materials for Optimal Resource Management in EU Countries. Sustainability, 14(11), 6554.
  • [35] Ziemann, S., Grunwald, A., Schebek, L., Müller, D. B., & Weil, M. (2013). The future of mobility and its critical raw materials. Metallurgical Research & Technology, 110(1), 47-54.
  • [36] Veral, E. S. (2018). Döngüsel ekonomiye geçiş doğrultusunda yeni tedbirler ve AB üye ülkelerinin stratejileri. Ankara Avrupa Çalışmaları Dergisi, 17(2), 463-488.
  • [37] Vicari, F., Randazzo, S., López, J., de Labastida, M. F., Vallès, V., Micale, G., ... & Cipollina, A. (2022). Mining minerals and critical raw materials from bittern: Understanding metal ions fate in saltwork ponds. Science of The Total Environment, 847, 157544.
  • [38] Temurçin, K., & Aliağaoğlu, A. (2003). Nükleer Enerji Ve Tartışmalar Işığında Türkiye’de Nükleer Enerji Gerçeği. Coğrafi Bilimler Dergisi, 1(2), 25-39.
  • [39] DeWit, A. (2023). Decarbonization and Critical Raw Materials. In Governance for a Sustainable Future: The State of the Art in Japan (pp. 279-298). Singapore: Springer Nature Singapore.
  • [40] Rockart, J. F. (1979). Chief executives define their own data needs. Harvard business review, 57(2), 81-93.
  • [41] Kurt, Ü., Can, M., Yahşi, M., Adıgüzel, N., Özkul, H., Turhan, A., ... & Üzer, S. (2023). Bor madenleri nedir? Nerelerde kullanılır? Türkiye ekonomisine etkileri ve dünyadaki yeri. International Journal Of Social Humanities Sciences Research, 10(94), 937-946.
  • [42] Özdemir, A. (2023). Türkiye’de li-ion pil üretimi yatırımları. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 10(19), 79-86.
  • [43] Arslan, H. (2023). Yenilenebilir enerji yatırımlarının finansman modelleri. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 10(4), 833-846.
  • [44] Tuna, İ. K. (2010). Stratejik ve kritik madenlere ilişkin küresel politikalar çerçevesinde Türkiye’deki stratejik ve kritik madenlerin ulusal güvenliğe etkileri (Master's thesis, Sosyal Bilimler Enstitüsü).
  • [45] Tomazinakis, S., Valakas, G., Gaki, A., Damigos, D., & Adam, K. (2022). The importance and challenges of sustainable development for the raw materials sector: the views of key stakeholders in three ESEE countries. Sustainability, 14(7), 3933.
  • [46] EBRD Extractive Mining Industries Strategy, 2018–2022. As Approved by the Board of Directors on 13 December 2017. 2017.
  • [47] Derse, O., & Göçmen, E. (2018). A Simulation Modelling Approach for Analysing the Transportation of Containers in A Container Terminal System. International Scientific and Vocational Studies Journal, 2(1), 19-28.

Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects

Year 2023, Volume: 7 Issue: 2, 176 - 186, 31.12.2023
https://doi.org/10.47897/bilmes.1397666

Abstract

Raw materials are the necessary building blocks for the functioning of the country's economy and industries. It is inevitable for countries to direct their economic policies towards sustainability within the scope of their green and digital transformation efforts. The fact that green and digital transformation are among the most driving forces in achieving sustainable development also reveals the criticality of the raw materials to be used in the technologies required for this transformation. The positive effects of raw materials come to the fore in many areas such as the use of carbon neutral and green technologies required for climate and energy targets, the design of sustainable cities, and healthy and quality life. However, it is necessary to discuss the dilemma created by the negative environmental effects of mining activities undertaken to extract the raw materials necessary to achieve sustainability goals. Therefore, in this study, the positive or negative effects of raw materials on the Sustainable Development Goals (SDGs), sustainable performance criteria that can be used in the evaluation of raw materials, are examined with strategic planning tools. Policies, measures, and investments regarding the performance measures achieved in Turkey are investigated. At the end of the study, the strengths, weaknesses, threats, and opportunities of some raw materials in terms of targets are evaluated. Additionally, through analysis of critical success factors, numerical inputs that can be used for researchers conducting data studies in this field are presented.

References

  • [1] Michal, C., & Zuzana, Š. (2021). Critical raw materials as a part of sustainable development. Multidiszciplináris Tudományok, 11(5), 12-23.
  • [2] Tzachor, A., Sabri, S., Richards, C. E., Rajabifard, A., & Acuto, M. (2022). Potential and limitations of digital twins to achieve the sustainable development goals. Nature Sustainability, 5(10), 822-829.
  • [3] Obaideen, K., Abdelkareem, M. A., Wilberforce, T., Elsaid, K., Sayed, E. T., Maghrabie, H. M., & Olabi, A. G. (2022). Biogas role in achievement of the sustainable development goals: Evaluation, Challenges, and Guidelines. Journal of the Taiwan Institute of Chemical Engineers, 131, 104207.
  • [4] Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., ... & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature communications, 11(1), 1-10.
  • [5] Mehmood, U. (2021). Contribution of renewable energy towards environmental quality: The role of education to achieve sustainable development goals in G11 countries. Renewable Energy, 178, 600-607.
  • [6] Tomazinakis, S., Valakas, G., Gaki, A., Damigos, D., & Adam, K. (2021). The Significance of SDGs for the Raw Materials Sector: A Stakeholders’ Approach in Three ESEE Countries. Materials Proceedings, 5(1), 48.
  • [7] Mancini, L., Vidal Legaz, B., Vizzarri, M., Wittmer, D., Grassi, G., & Pennington, D. (2019). Mapping the role of raw materials in sustainable development goals. A Preliminary Analysis of Links, Monitoring Indicators, and Related Policy Initiatives, 3, 1-9.
  • [8] da Silva Lima, L., Cocquyt, L., Mancini, L., Cadena, E., & Dewulf, J. (2023). The role of raw materials to achieve the Sustainable Development Goals: Tracing the risks and positive contributions of cobalt along the lithium‐ion battery supply chain. Journal of Industrial Ecology, 27(3), 777-794.
  • [9] Maxwell, S. L., Milner-Gulland, E. J., Jones, J. P., Knight, A. T., Bunnefeld, N., Nuno, A., ... & Rhodes, J. R. (2015). Being smart about SMART environmental targets. Science, 347(6226), 1075-1076.
  • [10] Baranzelli, C., Blengini, G. A., Josa, S. O., & Lavalle, C. (2022). EU–Africa Strategic Corridors and critical raw materials: two-way approach to regional development and security of supply. International Journal of Mining, Reclamation and Environment, 36(9), 607-623.
  • [11] Wongnaa, C. A., & Awunyo-Vitor, D. (2018). Achieving sustainable development goals on no poverty and zero hunger: Does technical efficiency of Ghana’s maize farmers matter? Agriculture & Food Security, 7(1), 1-13.
  • [12] Khanal, U., Wilson, C., Rahman, S., Lee, B. L., & Hoang, V. N. (2021). Smallholder farmers’ adaptation to climate change and its potential contribution to UN’s sustainable development goals of zero hunger and no poverty. Journal of Cleaner Production, 281, 124999.
  • [13] McLaughlin, M. J., Parker, D. R., & Clarke, J. M. (1999). Metals and micronutrients–food safety issues. Field crops research, 60(1-2), 143-163.
  • [14] Nieder, R., Benbi, D. K., Reichl, F. X., Nieder, R., Benbi, D. K., & Reichl, F. X. (2018). Microelements and their role in human health. Soil components and human health, 317-374.
  • [15] Torreggiani, A., Zanelli, A., Degli Esposti, A., Polo, E., Dambruoso, P., Lapinska-Viola, R., ... & Benvenuti, E. (2021). How to prepare future generations for the challenges in the raw materials sector. In Rare Metal Technology 2021 (pp. 277-287). Springer International Publishing.
  • [16] Hofmann, M., Hofmann, H., Hagelüken, C., & Hool, A. (2018). Critical raw materials: A perspective from the materials science community. Sustainable Materials and Technologies, 17, e00074.
  • [17] Hartlieb, P., Jorda Bordehore, L., Regueiro y González-Barros, M., Correia, V., & Vidovic, J. (2020). A comprehensive skills catalogue for the raw materials sector and the structure of raw materials education worldwide. Mining Technology, 129(2), 82-94.
  • [18] Rietveld, E., Bastein, T., van Leeuwen, T., Wieclawska, S., Bonenkamp, N., Peck, D., ... & Poitiers, N. (2022). Strengthening the security of supply of products containing Critical Raw Materials for the green transition and decarbonisation. European Parliament.
  • [19] Pavel, C. C., Marmier, A., Tzimas, E., Schleicher, T., Schüler, D., Buchert, M., & Blagoeva, D. (2016). Critical raw materials in lighting applications: Substitution opportunities and implication on their demand. physica status solidi (a), 213(11), 2937-2946.
  • [20] Gotti, F. (2022). Critical raw materials for wind and solar PV energy applications: state of the art, future opportunities and critical issues.
  • [21] Wentker, M., Greenwood, M., Asaba, M. C., & Leker, J. (2019). A raw material criticality and environmental impact assessment of state-of-the-art and post-lithium-ion cathode technologies. Journal of Energy Storage, 26, 101022.
  • [22] Polat, E. G., Yücesan, M., & Gül, M. (2023). A comparative framework for criticality assessment of strategic raw materials in Turkey. Resources Policy, 82, 103511.
  • [23] Hennebel, T., Boon, N., Maes, S., & Lenz, M. (2015). Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New biotechnology, 32(1), 121-127.
  • [24] Konuk, A., Gürsoy, Y. H., & Hakan, A. K. (2021). Doğal grafit ihracatı yoğunlaşmasının ekonomik büyüme üzerindeki etkisi. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 29(3), 316-327.
  • [25] Hofmann, M., Hofmann, H., Hagelüken, C., & Hool, A. (2018). Critical raw materials: A perspective from the materials science community. Sustainable Materials and Technologies, 17, e00074.
  • [26] Ghamisi, P., Shahi, K. R., Duan, P., Rasti, B., Lorenz, S., Booysen, R., ... & Gloaguen, R. (2021). The potential of machine learning for a more responsible sourcing of critical raw materials. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8971-8988.
  • [27] Jarosiński, A., Żelazny, S., & Cholewa, M. (2016). Raw Materials and Possibilities of their obtaining in Poland. Inżynieria Mineralna, 17(1), 233-240.
  • [28] Michal, C., & Zuzana, Š. (2021). Critical raw materials as a part of sustainable development. Multidiszciplináris Tudományok, 11(5), 12-23.
  • [29] Zhang, S. E., Bourdeau, J. E., Nwaila, G. T., & Ghorbani, Y. (2023). Emerging criticality: Unraveling shifting dynamics of the EU's critical raw materials and their implications on Canada and South Africa. Resources Policy, 86, 104247.
  • [30] Mancini, L., & Sala, S. (2018). Social impact assessment in the mining sector: Review and comparison of indicators frameworks. Resources Policy, 57, 98-111.
  • [31] Foresta, D. L., & Cerasuolo, A. (2021). Critical raw materials and cities: A literature review. Journal of Urban Regeneration & Renewal, 15(1), 71-82.
  • [32] Radwanek-Bąk, B. (2011). Mineral resources of Poland in the aspect of the assessment of critical minerals to the European Union Economy. Gospodarka Surowcami Mineralnymi, (1).
  • [33] Pommeret, A., Ricci, F., & Schubert, K. (2022). Critical raw materials for the energy transition. European Economic Review, 141, 103991.
  • [34] Domaracka, L., Matuskova, S., Tausova, M., Senova, A., & Kowal, B. (2022). Efficient Use of Critical Raw Materials for Optimal Resource Management in EU Countries. Sustainability, 14(11), 6554.
  • [35] Ziemann, S., Grunwald, A., Schebek, L., Müller, D. B., & Weil, M. (2013). The future of mobility and its critical raw materials. Metallurgical Research & Technology, 110(1), 47-54.
  • [36] Veral, E. S. (2018). Döngüsel ekonomiye geçiş doğrultusunda yeni tedbirler ve AB üye ülkelerinin stratejileri. Ankara Avrupa Çalışmaları Dergisi, 17(2), 463-488.
  • [37] Vicari, F., Randazzo, S., López, J., de Labastida, M. F., Vallès, V., Micale, G., ... & Cipollina, A. (2022). Mining minerals and critical raw materials from bittern: Understanding metal ions fate in saltwork ponds. Science of The Total Environment, 847, 157544.
  • [38] Temurçin, K., & Aliağaoğlu, A. (2003). Nükleer Enerji Ve Tartışmalar Işığında Türkiye’de Nükleer Enerji Gerçeği. Coğrafi Bilimler Dergisi, 1(2), 25-39.
  • [39] DeWit, A. (2023). Decarbonization and Critical Raw Materials. In Governance for a Sustainable Future: The State of the Art in Japan (pp. 279-298). Singapore: Springer Nature Singapore.
  • [40] Rockart, J. F. (1979). Chief executives define their own data needs. Harvard business review, 57(2), 81-93.
  • [41] Kurt, Ü., Can, M., Yahşi, M., Adıgüzel, N., Özkul, H., Turhan, A., ... & Üzer, S. (2023). Bor madenleri nedir? Nerelerde kullanılır? Türkiye ekonomisine etkileri ve dünyadaki yeri. International Journal Of Social Humanities Sciences Research, 10(94), 937-946.
  • [42] Özdemir, A. (2023). Türkiye’de li-ion pil üretimi yatırımları. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 10(19), 79-86.
  • [43] Arslan, H. (2023). Yenilenebilir enerji yatırımlarının finansman modelleri. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 10(4), 833-846.
  • [44] Tuna, İ. K. (2010). Stratejik ve kritik madenlere ilişkin küresel politikalar çerçevesinde Türkiye’deki stratejik ve kritik madenlerin ulusal güvenliğe etkileri (Master's thesis, Sosyal Bilimler Enstitüsü).
  • [45] Tomazinakis, S., Valakas, G., Gaki, A., Damigos, D., & Adam, K. (2022). The importance and challenges of sustainable development for the raw materials sector: the views of key stakeholders in three ESEE countries. Sustainability, 14(7), 3933.
  • [46] EBRD Extractive Mining Industries Strategy, 2018–2022. As Approved by the Board of Directors on 13 December 2017. 2017.
  • [47] Derse, O., & Göçmen, E. (2018). A Simulation Modelling Approach for Analysing the Transportation of Containers in A Container Terminal System. International Scientific and Vocational Studies Journal, 2(1), 19-28.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Industrial Engineering
Journal Section Articles
Authors

Elifcan Göçmen Polat 0000-0002-0316-281X

Publication Date December 31, 2023
Submission Date November 29, 2023
Acceptance Date December 15, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Göçmen Polat, E. (2023). Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects. International Scientific and Vocational Studies Journal, 7(2), 176-186. https://doi.org/10.47897/bilmes.1397666
AMA Göçmen Polat E. Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects. ISVOS. December 2023;7(2):176-186. doi:10.47897/bilmes.1397666
Chicago Göçmen Polat, Elifcan. “Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects”. International Scientific and Vocational Studies Journal 7, no. 2 (December 2023): 176-86. https://doi.org/10.47897/bilmes.1397666.
EndNote Göçmen Polat E (December 1, 2023) Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects. International Scientific and Vocational Studies Journal 7 2 176–186.
IEEE E. Göçmen Polat, “Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects”, ISVOS, vol. 7, no. 2, pp. 176–186, 2023, doi: 10.47897/bilmes.1397666.
ISNAD Göçmen Polat, Elifcan. “Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects”. International Scientific and Vocational Studies Journal 7/2 (December 2023), 176-186. https://doi.org/10.47897/bilmes.1397666.
JAMA Göçmen Polat E. Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects. ISVOS. 2023;7:176–186.
MLA Göçmen Polat, Elifcan. “Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects”. International Scientific and Vocational Studies Journal, vol. 7, no. 2, 2023, pp. 176-8, doi:10.47897/bilmes.1397666.
Vancouver Göçmen Polat E. Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects. ISVOS. 2023;7(2):176-8.


Creative Commons Lisansı


Creative Commons Atıf 4.0 It is licensed under an International License