Research Article
BibTex RIS Cite

Zea mays L.'nin termik santral uçucu kül uygulamalarına karşı ekofizyolojik tepkileri

Year 2021, Volume: 14 Issue: 2, 286 - 291, 15.08.2021
https://doi.org/10.46309/biodicon.2021.960618

Abstract

Termik santral uçucu külü, bir termik santralde kömür yakılarak üretilen en önemli atık olduğu için bu tür enerji üretiminin en önemli endişelerinden biridir. Bu tür uçucu kül, konsantrasyona bağlı olarak yararlı veya zararlı olabilen Fe, Al, Si, Ca, Na ve K gibi elementler içerir. Termik santral uçucu külünün ekolojik sistem üzerindeki etkisini değerlendirmek için bitkilerin ekofizyolojik tepkilerini analiz etmek gerekir. Zea mays L. (mısır), 10000 yıldır yetiştirilen, dünya çapında tüketilen bir bitki türüdür ve genetik ve biyoloji için önemli bir model organizmadır. Bu çalışmada, termik santral uçucu kül uygulamalarına karşı mısırın ekofizyolojik tepkilerinin gözlemlenmesi amaçlanmıştır. Deney periyodu için kontrol (0 ppm), 500, 1000, 2500, 5000 ve 7500 ppm uçucu kül uygulamaları yapılmıştır. Fidelik olarak 1 kg kapasiteli saksılar kullanılmaktadır. Farklı uçucu kül konsantrasyonları tartılmış ve 500 g toprak ile karıştırılmıştır. Daha sonra saksılara konan topraklara uçucu kül ilave edilir. Zea mays cv. Sweetcorn tohumları toprak dolu saksılara batırılmış ve 100 ml distile su ile sulanmıştır. Denemeler 14 gün sürmüş ve deneme süresi sonunda % çimlenme, hipokotil ve kök uzunlukları, fide canlılık indeksi hesaplanmıştır. 500 ila 5000 ppm uçucu kül uygulamalarının tohum çimlenmesini, gövde ve kök gelişimini ve ayrıca SVI'yı uyardığı, ancak 7500 ppm uçucu kül uygulamalarının tüm ekofizyolojik parametreler tarafından engellendiği görülmüştür. 5000 ppm'den daha düşük uçucu külün tarımsal uygulamalar için faydalı olabileceğini, ancak 5000 ppm seviyesinin üzerinde bitki gelişimine zararlı olduğunu söyleyebiliriz.

References

  • [1]. Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., & Xi, Y. Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141, 105-121.
  • [2]. Ferreira, C., Ribeiro, A., & Ottosen, L. (2003). Possible Applications for Municipal Solid Waste Fly Ash. Journal of Hazardous Materials, 96(2-3), 201-216.
  • [3]. Khan, I., & Umar, R. (2019). Environmental risk assessment of coal fly ash on soil and groundwater quality, Aligarh, India. Groundwater for Sustainable Development, 8, 346–357.
  • [4]. Blissett, R.S., & Rowson, N.A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1–23.
  • [5]. Isik, G., & Leblebici, S. (2016). Seed Germination Behavior of some Safflower (Carthamus tinctorius) Varieties According to Habitat Conditions Containing Different Concentrations of Boric Acid. Pakistan Journal of Botany 48(6):2211-2214.
  • [6]. Abdulbaki, A. A., & Anderson, J. D. (1973). Relationship between decarboxylation of glutamic acid and vigor in soybean seeds. Crop Science, 13, 222-226. [7]. Jala, S., & Goyal, D. (2006). Fly ash as a soil ameliorant for improving crop production – a review. Bioresour Technol, 97(9):1136–47.
  • [8]. Kosnar, Z., Mercl, F., & Tlustos, P. (2018). Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs–spiked soil. Ecotoxicology and Environmental Safety, 153, 16–22.
  • [9]. Fu, Z. J., Li, W. H., Zhang, Q. B. (2014). Quantitative trait loci for mercury accumulation in maize (Zea mays L.) identified using a RIL population. Plos one, 9(9):1–9. [10]. Dash, A. K., Pradhan, A., Das, S., & Mohanty, S. S. (2015). Fly ash as a potentıal source of soıl amendment ın agrıculture and a component of ıntegrated plant nutrıent supply system. Journal of Industrial Pollution Control, 31(2): 251-259.
  • [11]. Akın, S. S., Magalhães, D., & Kazanc, F. (2020). A study on the effects of various combustion parameters on the mineral composition of Tunçbilek fly ash. Fuel, 275, 117881.
  • [12]. Usmani, Z., Kumar, V., Gupta, P., Gupta, G., Ran, R., & Chandra, A. (2019). Enhanced soil fertility, plant growth promotion and microbial enzymatic activities of vermicomposted fly ash. Scientific Reports, 9(1), 10455.
  • [13]. Geetanjali, K., Ravi, M. V., Gaddi, A. K., Shyamarao, M., & Shyamarao, K. (2017). Effect of flyash and organic manures application on growth and yield of maize (Zea mays L.). Agriculture Update, 12(TECHSEAR-5), 1233-1236.
  • [14]. Meij, R., (1995). The distribution of trace elements during the combustion of coal. In: Swaine, D.J., Goodarzi, F. (Eds.), Environmental Aspects of Trace Elements in Coal. Kluwer Academic Publication, Dordrecht, The Netherlands, pp. 111–127.
  • [15]. Singh, L. P., & Siddiqui, Z. A. (2003). Effects of fly ash and Helminthosporium oryzae on growth and yield of three cultivars of rice. Bioresource Technology, 86, 73–78.
  • [16]. Singh, A., Sharma, K. R., & Agrawal B. S. (2008). Effects of fly ash incorporation on heavy metal accumulation, growth and yield responses of Beta vulgaris plants. Bioresource Technology, 99(15), 7200–7207.
  • [17]. Muduli, S. D., Chaturvedi, N., Mohapatra, P., Dhal, N. K., & Nayak, B. D. (2014). Growth and Physiological Activities of Selected Leguminous Crops Grown in Carbonated Fly Ash Amended Soil. Greener Journal of Agricultural Sciences, 4(3), 083-090.
  • [18]. Singh, L., & Sukul, P. (2019). Impact Ofvermıcompost, Farm Yard Manure, Flyash And Inorganıc Fertılızers On Growth And Yıeld Attrıbutıng Characters Of Maıze (Zea mays L.). Plant Archives, 19(2), 2193-2200.
  • [19]. Coe, E. H. Jr. (2001). The origins of maize genetics. Nature Reviews Genetics, 2, 898–905.
  • [20]. Rhoades, M. M. (1984). The early years of maize genetics. Annual Review of Genetics, 18, 1–29.
  • [21]. Strable, J., & Scanlon, j. M. (2009). Maize (Zea mays): a model organism for basic and applied research in plant biology. Cold Spring Harbor Protocols, 4(10). https://doi:10.1101/pdb.emo132
  • [22]. Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327– 363.
  • [23]. Baba, A., Gurdal, G., & Sanliyuksel Yucel, D. (2016). Enrichment of trace element concentrations in coal and its combustion residues and their potential environmental and human health impact: Can Coal Basin, NW Turkey as a case study. International Journal of Environmental Technology and Management, 19(5–6), 455–478.
  • [24]. Ileri, B., & Yucel, S. D. (2020). Metal removal from acid mine lake using ultrasound-assisted modified fly ash at different frequencies. Environmental Monitoring and Assessment, 192(3), 185. https://doi:10.1007/s10661-020-8150-4
  • [25]. Demir, I., Sevım, O., Ozel, G., & Dogan, O. (2020). Mıcrostructural, Physıcal And Mechanıcal Propertıes Of Aerated Concrete Contaınıng Fly Ash Under Hıgh Temperature And Pressure. Romanian Journal of Materials, 50(2), 240 – 249.
  • [26]. Panigrahi, T., Das, K. K., Das, M., Panda, K. S., & Panda, R. B. (2014). Fly ash and treated waste water effect on improving soil properties and rice productivity: A way for sustainable agriculture practice. Discovery Nature, 7(17), 30-38.

Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications

Year 2021, Volume: 14 Issue: 2, 286 - 291, 15.08.2021
https://doi.org/10.46309/biodicon.2021.960618

Abstract

Thermal power plant fly ash is one of the most important concerns of this form of energy generation, as it is the most important waste generated by burning coal in a thermal power plant. This kind of fly ash contains elements like Fe, Al, Si, Ca, Na, and K which can be beneficial or harmful depending on the concentration. To evaluate the effect of thermal power plant fly ash on the ecological system, it is necessary to analyze the ecophysiological responses of plants. Zea mays L. (corn) is a worldwide consumed plant species that has been cultivated for 10000 years and it is an important model organism for genetics and biology. In this study, it was aimed that to observe ecophysiological responses of corn against thermal power plant fly ash applications. For the experimental period, control (0 ppm), 500, 1000, 2500, 5000, and 7500 ppm of fly ash applications were set. Pots with 1 kg capacity used as seedbeds. Different fly ash concentrations were weighed and mixed with 500 g soil. Then fly ash is added to soils set in the pots. Zea mays cv. Sweetcorn seeds were soaked in soil-filled pots and watered with 100 ml distilled water. The experiments took 14 days, and at the end of the experimental period % germination, hypocotyl and radicle lengths, seedling vigor index were calculated. It was observed that 500 to 5000 ppm fly ash applications were stimulated the seed germination, stem and root development, and also SVI, but 7500 ppm fly ash applications were inhibited by all ecophysiological parameters. We can say that lower than 5000 ppm fly ash can be useful for agricultural practices, however above 5000 ppm level it is harmful to plant development.

References

  • [1]. Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., & Xi, Y. Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141, 105-121.
  • [2]. Ferreira, C., Ribeiro, A., & Ottosen, L. (2003). Possible Applications for Municipal Solid Waste Fly Ash. Journal of Hazardous Materials, 96(2-3), 201-216.
  • [3]. Khan, I., & Umar, R. (2019). Environmental risk assessment of coal fly ash on soil and groundwater quality, Aligarh, India. Groundwater for Sustainable Development, 8, 346–357.
  • [4]. Blissett, R.S., & Rowson, N.A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1–23.
  • [5]. Isik, G., & Leblebici, S. (2016). Seed Germination Behavior of some Safflower (Carthamus tinctorius) Varieties According to Habitat Conditions Containing Different Concentrations of Boric Acid. Pakistan Journal of Botany 48(6):2211-2214.
  • [6]. Abdulbaki, A. A., & Anderson, J. D. (1973). Relationship between decarboxylation of glutamic acid and vigor in soybean seeds. Crop Science, 13, 222-226. [7]. Jala, S., & Goyal, D. (2006). Fly ash as a soil ameliorant for improving crop production – a review. Bioresour Technol, 97(9):1136–47.
  • [8]. Kosnar, Z., Mercl, F., & Tlustos, P. (2018). Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs–spiked soil. Ecotoxicology and Environmental Safety, 153, 16–22.
  • [9]. Fu, Z. J., Li, W. H., Zhang, Q. B. (2014). Quantitative trait loci for mercury accumulation in maize (Zea mays L.) identified using a RIL population. Plos one, 9(9):1–9. [10]. Dash, A. K., Pradhan, A., Das, S., & Mohanty, S. S. (2015). Fly ash as a potentıal source of soıl amendment ın agrıculture and a component of ıntegrated plant nutrıent supply system. Journal of Industrial Pollution Control, 31(2): 251-259.
  • [11]. Akın, S. S., Magalhães, D., & Kazanc, F. (2020). A study on the effects of various combustion parameters on the mineral composition of Tunçbilek fly ash. Fuel, 275, 117881.
  • [12]. Usmani, Z., Kumar, V., Gupta, P., Gupta, G., Ran, R., & Chandra, A. (2019). Enhanced soil fertility, plant growth promotion and microbial enzymatic activities of vermicomposted fly ash. Scientific Reports, 9(1), 10455.
  • [13]. Geetanjali, K., Ravi, M. V., Gaddi, A. K., Shyamarao, M., & Shyamarao, K. (2017). Effect of flyash and organic manures application on growth and yield of maize (Zea mays L.). Agriculture Update, 12(TECHSEAR-5), 1233-1236.
  • [14]. Meij, R., (1995). The distribution of trace elements during the combustion of coal. In: Swaine, D.J., Goodarzi, F. (Eds.), Environmental Aspects of Trace Elements in Coal. Kluwer Academic Publication, Dordrecht, The Netherlands, pp. 111–127.
  • [15]. Singh, L. P., & Siddiqui, Z. A. (2003). Effects of fly ash and Helminthosporium oryzae on growth and yield of three cultivars of rice. Bioresource Technology, 86, 73–78.
  • [16]. Singh, A., Sharma, K. R., & Agrawal B. S. (2008). Effects of fly ash incorporation on heavy metal accumulation, growth and yield responses of Beta vulgaris plants. Bioresource Technology, 99(15), 7200–7207.
  • [17]. Muduli, S. D., Chaturvedi, N., Mohapatra, P., Dhal, N. K., & Nayak, B. D. (2014). Growth and Physiological Activities of Selected Leguminous Crops Grown in Carbonated Fly Ash Amended Soil. Greener Journal of Agricultural Sciences, 4(3), 083-090.
  • [18]. Singh, L., & Sukul, P. (2019). Impact Ofvermıcompost, Farm Yard Manure, Flyash And Inorganıc Fertılızers On Growth And Yıeld Attrıbutıng Characters Of Maıze (Zea mays L.). Plant Archives, 19(2), 2193-2200.
  • [19]. Coe, E. H. Jr. (2001). The origins of maize genetics. Nature Reviews Genetics, 2, 898–905.
  • [20]. Rhoades, M. M. (1984). The early years of maize genetics. Annual Review of Genetics, 18, 1–29.
  • [21]. Strable, J., & Scanlon, j. M. (2009). Maize (Zea mays): a model organism for basic and applied research in plant biology. Cold Spring Harbor Protocols, 4(10). https://doi:10.1101/pdb.emo132
  • [22]. Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327– 363.
  • [23]. Baba, A., Gurdal, G., & Sanliyuksel Yucel, D. (2016). Enrichment of trace element concentrations in coal and its combustion residues and their potential environmental and human health impact: Can Coal Basin, NW Turkey as a case study. International Journal of Environmental Technology and Management, 19(5–6), 455–478.
  • [24]. Ileri, B., & Yucel, S. D. (2020). Metal removal from acid mine lake using ultrasound-assisted modified fly ash at different frequencies. Environmental Monitoring and Assessment, 192(3), 185. https://doi:10.1007/s10661-020-8150-4
  • [25]. Demir, I., Sevım, O., Ozel, G., & Dogan, O. (2020). Mıcrostructural, Physıcal And Mechanıcal Propertıes Of Aerated Concrete Contaınıng Fly Ash Under Hıgh Temperature And Pressure. Romanian Journal of Materials, 50(2), 240 – 249.
  • [26]. Panigrahi, T., Das, K. K., Das, M., Panda, K. S., & Panda, R. B. (2014). Fly ash and treated waste water effect on improving soil properties and rice productivity: A way for sustainable agriculture practice. Discovery Nature, 7(17), 30-38.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Research Article
Authors

Sertaç Özgün 0000-0001-5438-9216

Gülçin Işık 0000-0001-5502-1026

Publication Date August 15, 2021
Submission Date July 1, 2021
Acceptance Date August 14, 2021
Published in Issue Year 2021 Volume: 14 Issue: 2

Cite

APA Özgün, S., & Işık, G. (2021). Zea mays L.’nin termik santral uçucu kül uygulamalarına karşı ekofizyolojik tepkileri. Biological Diversity and Conservation, 14(2), 286-291. https://doi.org/10.46309/biodicon.2021.960618

❖  Abstracted-Indexed in
Web of Science {Zoological Records Indexed] Clavariate Analytic, Medical Reads (RRS), CrossRef;10.46309/biodicon.

❖ Libraries
Aberystwyth University; All libraries; Bath University; Birmingham University; Cardiff University; City University London; CONSER (Not UK Holdings); Edinburgh University; Essex University; Exeter University; Eskişehir Technical University Library; EZB Electronic Journals Library; Feng Chia University Library; GAZİ Gazi University Library; Glasgow University; HEC-National Digital Library; Hull University; Imperial College London; Kaohsinug Medical University Library; ANKOS; Anadolu University Library; Lancaster University; Libros PDF; Liverpool University; London Metropolitan University; London School of Economics and Political Science; Manchester University; National Cheng Kung University Library; National ILAN University Library; Nottingham University; Open University; Oxford University; Queen Mary,University of London;Robert Gordon University; Royal Botanic Gardens, Kew; Sheffield Hallam University; Sheffield University; Shih Hsin University Library; Smithsonian Institution Libraries; Southampton University; Stirling University; Strathclyde University; Sussex University; The National Agricultural Library (NAL); The Ohio Library and Information NetWork; Trinity College Dublin; University of Washington Libraries; Vaughan Memorial Library; York University..

❖ The article processing is free.

❖ Web of Science-Clarivate Analytics, Zoological Record
❖ This journal is a CrossRef;10.46309/biodicon. member

❖ Please visit ” http:// www.biodicon.com“ ; "https://dergipark.org.tr/en/pub/biodicon"   for instructions about articles and all of the details about journal


❖  Correspondance Adres: Prof. Ersin YÜCEL, Sazova Mahallesi, Ziraat Caddesi, No.277 F Blok, 26005 Tepebaşı-Eskişehir/Türkiye
E-posta / E-mail: biodicon@gmail.com;
Web Address: http://www.biodicon.com;   https://dergipark.org.tr/en/pub/biodicon
❖ Biological Diversity and Conservation/ Biyolojik Çeşitlilik ve Koruma
❖ ISSN 1308-5301 Print; ISSN 1308-8084 Online
❖ Start Date Published 2008
© Copyright by Biological Diversity and Conservation/Biyolojik Çeşitlilik ve Koruma-Available online at www.biodicon.com/All rights reserved
Publisher : ERSİN YÜCEL (https://www.ersinyucel.com.tr/)
❖ This journal is published three numbers in a year. Printed in Eskişehir/Türkiye.
❖ All sorts of responsibilities of the articles published in this journal are belonging to the authors
Editör / Editor-In-Chief : Prof.Dr. Ersin YÜCEL, https://orcid.org/0000-0001-8274-7578