Research Article
BibTex RIS Cite

In vitro androgenesis in pepper (Capsicum annuum L.) and the affecting factors on success: II. Carbohydrate source and antioxidants

Year 2021, Volume: 30 Issue: 2, 92 - 97, 15.12.2021
https://doi.org/10.38042/biotechstudies.1000341

Abstract

Microspore cells develop into male gametophytes, which are released as pollen. Under
certain stress conditions, the developmental pathway of microspores can be
transformed into an embryo instead of pollen with haploid technology. In this
experiment, 2 pepper breeding lines (G-1 and G-2) and 4 nutrient media formed with
Murashige & Skoog (1962-MS) + 30 g L-1 sucrose or maltose and with or without
vitamins as antioxidants. 0.05 mg L-1 biotin (vitamin B7) and 0.5 mg L-1 ascorbic acid
(vitamin C) were studied as antioxidants. The anthers were pretreated for 2 days at 35
ºC in dark, then they were incubated in a climate chamber at 25 ºC and 16/8 hours
photoperiodic conditions. The highest embryos rate, and development of embryos
into the plantlet has been obtained from the medium containing maltose, and
antioxidants. Although there was no significant differences between genotypes in
medium- I (MS + sucrose), medium-II (MS + sucrose and antioxidants) and medium-III
(MS + maltose) in terms of embryogenic response, a significant difference was
determined between genotypes in medium-IV (MS + maltose and antioxidants). The
number of embryos obtained from the G-1 in medium-IV has increased 2.5, 6.4, and
4.5 times, compared to the medium-I, medium-II, and medium-III respectively.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TÜBİTAK) and

Project Number

3170610-TÜBİTAK-TEYDEB- AGY300-03

Thanks

The United Genetics Turkey Seed Company

References

  • Açıkgöz, N., İlker, E., & Gökçöl, A. (2004). Biyolojik araştırmaların bilgisayarda değerlendirilmeleri, Ege Üniversitesi Tohum Teknolojisi Uygulama ve Araştırma Merkezi Yayınları No: 2, Ege Üniversitesi Ziraat Fakültesi ofset atölyesi (in Turkish).
  • Al-Khayri J. M. (2001). Optimization of biotin and thiamine requirements for somatic embryogenesis of date palm (Phoenix dactylifera L.). In vitro Cellular &Developmental Biology Plant, 37(4), 453-456. http://doi.org/10.1079/IVP2001200
  • Bat, H., Shidfar, M., Çömlekçioğlu, N., & Ellialtıoğlu Ş. Ş. (2020). In vitro androgenesis in pepper and the affecting factors on success: I. Carbon source and concentrations. Biotech Studies, 29(2), 62-68. http://doi.org/10.38042/biost.2020.29.02.02
  • Becker M. G., Chan A., Mao X., Girard I. J., Lee S., Elhiti M., Stasolla, C., & Belmonte, M. F. (2014). Vitamin C deficiency improves somatic embryo development through distinct gene regulatory networks in Arabidopsis. J Exp. Bot., 65, 5903–5918. https://doi.org/10.1093/jxb/eru330
  • Cengiz, R. & Korkut, Z. K. (2020). Development of doubled haploid maize lines by using in vivo haploid technique. Biotech Studies, 29(1), 1-7. http://doi.org/10.38042/biost.2020.29.01.01
  • Cheng, Y., Jiao, Y., Miao, R., Tian, R., Liang Y., & Qiao, N. (2020). Exploring differentially expressed genes of microspore embryogenesis under heat stress in sweet pepper. African Journal of Biotechnology, 19(9), 661-674. https://doi.org/10.5897/AJB2020.17194
  • Çömlekçioğlu N., & Ellialtıoğlu, Ş. Ş. (2018). Review on the research carried out on in vitro androgenesis of peppers (Capsicum annuum L.) in Turkey. Research Journal of Biotechnology, 13(6), 75-84.
  • Demirkaya, B. & Comlekcioglu, N. (2021). Effects of biotin and ascorbic acid applications on haploid embryo induction in semisolid and double layer nutrient media in pepper (Capsicum annuum L.) anther culture. Int. J. Agric. Environ. Food Sci., 5(2), 191-196. https://doi.org/10.31015/jaefs.2021.2.8
  • El sharabasy S. F., Bosila, H. A., Abdel-Aal, W. B., Mansour, B. M., & Bana A. A. (2019). Effect of vitamins (pyridoxine and nicotinic acid), Thiamine-HCl and Myo-inositol at different concentrations on free amino acids and indoles content of embryogenic callus of in vitro date palm (Sakkoty and Bartamuda cultivars) materials. Research Proceedings, 11, 244-252. https://doi.org/10.21741/9781644900178-20
  • Geboloğlu, N., Doksöz Boncukçu, S., Durna, P. & Bayram, M. (2017). Patlıcanda Şeker, Bal ve Büyüme Düzenleyicilerin Anter Kültüründe Embriyoid Oluşumuna Etkisi. Akademik Ziraat Dergisi 6, 275-280.
  • George, L., & Narayanaswamy, S. (1973). Haploid Capsicum through experimental androgenesis. Protoplasma, 78(4), 467-470. https://doi.org/10.1007/BF01275781
  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12): 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Habibi, N., Suthar, P. K., & Purohit, S. D. (2009). Role of PGRs and inhibitors in induction and control of somatic embryogenesis in Themeda quadrivalvis. Indian Journal of Experimental Biology, 47 (3), 198–203. PMID: 19405386
  • Hoseini, M., Ghadimzadeh, M., Ahmadi, B. A. J., & Silva, T. (2014). Effects of ascorbic acid, -tocopherol, and glutathione on microspore embryogenesis in Brassica napus L. In Vitro Cellular & Developmental Biology–Plant, 50(1), 26–35. https://doi.org/10.1007/s11627-013-9579-8
  • Irıkova, T., Grozeva, S., Popov, P., Rodeva, V., & Todorovska, E. (2011). In vitro response of pepper anther culture (Capsicum annuum L.) depending on genotype, nutrient medium and duration of cultivation. Biotechnology and Biotechnological Equipment, 25(4), 2604-2609. https://doi.org/10.5504/BBEQ.2011.0090
  • Kuo, J. S., Wang, Z. Z., Chien, N. F., Ku, S. J., Kung, M. L., & Hsu, H. C. (1973). Investigation on the anther culture in vitro of Nicotiana tabacum L. and Capsicum annuum L. Acta Botanica Sinica, 15(1), 43–47.
  • Last, D. I., & Brettell, R. I. S. (1990). Embryo yield in wheat anther culture is influenced by the choice of sugar in the culture medium. Plant CelI Reports, 9, 14-16. https://doi.org/10.1007/BF00232126
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Navarro‐Alvarez, W., Baenziger, P. S., Eskridge K. M., Shelton, D. R., Gustafson, V. D., & Hugo, M. (2006). Effect of sugars in wheat anther culture media. Plant Breeding, 112(1), 53-62. https://doi.org/10.1111/j.1439- 0523.1994.tb01276.x
  • Ozsan, T., & Onus, A. N. (2017). In vitro pepper (Capsicum annuum L.) anther culture: Can be affected via vitamins B?. Biotechnology Journal International, 20(1), 1-13. https://doi.org/10.9734/BJI/2017/37102
  • Perez-Perez, Y., El-Tantawy, A. A., Solis, M. T., Risueno, M. C., & Testillano, P. S. (2019). Stress-induced microspore embryogenesis requires endogenous auxin synthesis and polar transport in barley. Front. Plant Sci., 10:1200. https://doi.org/10.3389/fpls.2019.01200
  • Rodriguez-Serrano, M., Barany, I., Prem, D., Coronado, M. J., Risueno, M. C., & Testilano, P. S. (2012). NO, ROS, and cell death associated with caspase-like activity increase in stress induced microspore embryogenesis of barley. J. of Experimental Botany, 63(5): 2007-24. https://doi.org/10.1093/jxb/err400
  • Roje, S. (2007). Vitamin B biosynthesis in plants. Phytochemistry, 68, 1904-1921. https://doi.org/10.1016/j.phytocochem.2007.03.038
  • Sanchez, M. A., Coronado, Y. M., & Coronado, A. C. M. (2020). Androgenic studies in the production of haploids and doubled haploids in Capsicum spp. Revista Facultad Nacional de Agronomia Medellin, 73, 9047-9056. https://doi.org/10.15446/rfnam.v73n1.76044
  • Segui-Simarro, J. M., & Nuez, F. (2008). How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore derived embryogenesis. Physiologia Plantarum, 134(1), 1–12. https://doi.org/10.1111/j.1399-3054.2008.01113.x.
  • Shariatpanahi, M.E., Bal, U., Heberle-Bors E., & Touraev, A. (2006). Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiologia Plantarum, 127(4), 519–534. https://doi.org/10.1111/j.1399-3054.2006.00675.x
  • Testillano, P. S. (2018). Stress-induced microspore embryogenesis in crop plants: Cell totipotency acquisition and embryo development. In: Cánovas F., Lüttge U., Leuschner C., Risueño MC. (eds) Progress in Botany Vol. 81. Progress in Botany, vol 81. Springer, Cham. https://doi.org/10.1007/124_2018_24
  • Taskin, H., Buyukalaca, S., Keles, D., & Ekbic, E. (2011). Induction of microspore-derived embryos by anther culture in selected pepper genotypes. African Journal of Biotechnology. https://doi.org/10.5897/AJB11.2023
  • Testillano, P. S. (2019). Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. Journal of Experimental Botany, 70(11), 2965–2978. https://doi.org/10.1093/jxb/ery464.
  • Trejo-Tapia, G., Amaya, U. M., Morales, G. S., Sanchez, A. D. J., Bonfil, B. M., Monroy, M. R., & Jimenez-Aparicio, A. (2002). The effects of cold-pretreatment, auxins and carbon source on anther culture of rice. Plant Cell, Tissue and Organ Culture, 71, 41–46. https://doi.org/10.1023/A:1016558025840
  • Wang, Y. Y., Sun, C. S., Wang, C. C., & Chien, N. F. (1973). The induction of the pollen plantlets of triticale and Capsicum annuum L. from anther culture. Science Sinica, 16, 147-151.
  • Varnier A.L., Jacquard C., &Clement C. (2009) Programmed cell death and microspore embryogenesis. In: Touraev A., Forster B.P., Jain S.M. (eds) Advances in Haploid Production in higher plants. Springer, Dordrecht. 147–154. https://doi.org/10.1007/978-1-4020-8854-4_11
  • Zeng, A., Yan, J., Song, L., Gao, B., & Li, J. (2015). Effects of ascorbic acid and embryogenic microspore selection on embryogenesis in white cabbage (Brassica oleracea L. var. capitata). The Journal of Horticultural Science and Biotechnology, 90(6), 607-612. https://doi.org/10.1080/14620316.2015.11668722
  • Zur, I., Dubas, E., Golemiec, E., Szechyńska-Hebda, M., Golebiowska, G., & Wedzony, M. (2009). Stress-related variation in anti-oxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of Triticale (×Triticosecale Wittm.). Plant Cell Rep., 28, 1279-1287. https://doi.org/10.1007/s00299-009-0730-2
Year 2021, Volume: 30 Issue: 2, 92 - 97, 15.12.2021
https://doi.org/10.38042/biotechstudies.1000341

Abstract

Project Number

3170610-TÜBİTAK-TEYDEB- AGY300-03

References

  • Açıkgöz, N., İlker, E., & Gökçöl, A. (2004). Biyolojik araştırmaların bilgisayarda değerlendirilmeleri, Ege Üniversitesi Tohum Teknolojisi Uygulama ve Araştırma Merkezi Yayınları No: 2, Ege Üniversitesi Ziraat Fakültesi ofset atölyesi (in Turkish).
  • Al-Khayri J. M. (2001). Optimization of biotin and thiamine requirements for somatic embryogenesis of date palm (Phoenix dactylifera L.). In vitro Cellular &Developmental Biology Plant, 37(4), 453-456. http://doi.org/10.1079/IVP2001200
  • Bat, H., Shidfar, M., Çömlekçioğlu, N., & Ellialtıoğlu Ş. Ş. (2020). In vitro androgenesis in pepper and the affecting factors on success: I. Carbon source and concentrations. Biotech Studies, 29(2), 62-68. http://doi.org/10.38042/biost.2020.29.02.02
  • Becker M. G., Chan A., Mao X., Girard I. J., Lee S., Elhiti M., Stasolla, C., & Belmonte, M. F. (2014). Vitamin C deficiency improves somatic embryo development through distinct gene regulatory networks in Arabidopsis. J Exp. Bot., 65, 5903–5918. https://doi.org/10.1093/jxb/eru330
  • Cengiz, R. & Korkut, Z. K. (2020). Development of doubled haploid maize lines by using in vivo haploid technique. Biotech Studies, 29(1), 1-7. http://doi.org/10.38042/biost.2020.29.01.01
  • Cheng, Y., Jiao, Y., Miao, R., Tian, R., Liang Y., & Qiao, N. (2020). Exploring differentially expressed genes of microspore embryogenesis under heat stress in sweet pepper. African Journal of Biotechnology, 19(9), 661-674. https://doi.org/10.5897/AJB2020.17194
  • Çömlekçioğlu N., & Ellialtıoğlu, Ş. Ş. (2018). Review on the research carried out on in vitro androgenesis of peppers (Capsicum annuum L.) in Turkey. Research Journal of Biotechnology, 13(6), 75-84.
  • Demirkaya, B. & Comlekcioglu, N. (2021). Effects of biotin and ascorbic acid applications on haploid embryo induction in semisolid and double layer nutrient media in pepper (Capsicum annuum L.) anther culture. Int. J. Agric. Environ. Food Sci., 5(2), 191-196. https://doi.org/10.31015/jaefs.2021.2.8
  • El sharabasy S. F., Bosila, H. A., Abdel-Aal, W. B., Mansour, B. M., & Bana A. A. (2019). Effect of vitamins (pyridoxine and nicotinic acid), Thiamine-HCl and Myo-inositol at different concentrations on free amino acids and indoles content of embryogenic callus of in vitro date palm (Sakkoty and Bartamuda cultivars) materials. Research Proceedings, 11, 244-252. https://doi.org/10.21741/9781644900178-20
  • Geboloğlu, N., Doksöz Boncukçu, S., Durna, P. & Bayram, M. (2017). Patlıcanda Şeker, Bal ve Büyüme Düzenleyicilerin Anter Kültüründe Embriyoid Oluşumuna Etkisi. Akademik Ziraat Dergisi 6, 275-280.
  • George, L., & Narayanaswamy, S. (1973). Haploid Capsicum through experimental androgenesis. Protoplasma, 78(4), 467-470. https://doi.org/10.1007/BF01275781
  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12): 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Habibi, N., Suthar, P. K., & Purohit, S. D. (2009). Role of PGRs and inhibitors in induction and control of somatic embryogenesis in Themeda quadrivalvis. Indian Journal of Experimental Biology, 47 (3), 198–203. PMID: 19405386
  • Hoseini, M., Ghadimzadeh, M., Ahmadi, B. A. J., & Silva, T. (2014). Effects of ascorbic acid, -tocopherol, and glutathione on microspore embryogenesis in Brassica napus L. In Vitro Cellular & Developmental Biology–Plant, 50(1), 26–35. https://doi.org/10.1007/s11627-013-9579-8
  • Irıkova, T., Grozeva, S., Popov, P., Rodeva, V., & Todorovska, E. (2011). In vitro response of pepper anther culture (Capsicum annuum L.) depending on genotype, nutrient medium and duration of cultivation. Biotechnology and Biotechnological Equipment, 25(4), 2604-2609. https://doi.org/10.5504/BBEQ.2011.0090
  • Kuo, J. S., Wang, Z. Z., Chien, N. F., Ku, S. J., Kung, M. L., & Hsu, H. C. (1973). Investigation on the anther culture in vitro of Nicotiana tabacum L. and Capsicum annuum L. Acta Botanica Sinica, 15(1), 43–47.
  • Last, D. I., & Brettell, R. I. S. (1990). Embryo yield in wheat anther culture is influenced by the choice of sugar in the culture medium. Plant CelI Reports, 9, 14-16. https://doi.org/10.1007/BF00232126
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Navarro‐Alvarez, W., Baenziger, P. S., Eskridge K. M., Shelton, D. R., Gustafson, V. D., & Hugo, M. (2006). Effect of sugars in wheat anther culture media. Plant Breeding, 112(1), 53-62. https://doi.org/10.1111/j.1439- 0523.1994.tb01276.x
  • Ozsan, T., & Onus, A. N. (2017). In vitro pepper (Capsicum annuum L.) anther culture: Can be affected via vitamins B?. Biotechnology Journal International, 20(1), 1-13. https://doi.org/10.9734/BJI/2017/37102
  • Perez-Perez, Y., El-Tantawy, A. A., Solis, M. T., Risueno, M. C., & Testillano, P. S. (2019). Stress-induced microspore embryogenesis requires endogenous auxin synthesis and polar transport in barley. Front. Plant Sci., 10:1200. https://doi.org/10.3389/fpls.2019.01200
  • Rodriguez-Serrano, M., Barany, I., Prem, D., Coronado, M. J., Risueno, M. C., & Testilano, P. S. (2012). NO, ROS, and cell death associated with caspase-like activity increase in stress induced microspore embryogenesis of barley. J. of Experimental Botany, 63(5): 2007-24. https://doi.org/10.1093/jxb/err400
  • Roje, S. (2007). Vitamin B biosynthesis in plants. Phytochemistry, 68, 1904-1921. https://doi.org/10.1016/j.phytocochem.2007.03.038
  • Sanchez, M. A., Coronado, Y. M., & Coronado, A. C. M. (2020). Androgenic studies in the production of haploids and doubled haploids in Capsicum spp. Revista Facultad Nacional de Agronomia Medellin, 73, 9047-9056. https://doi.org/10.15446/rfnam.v73n1.76044
  • Segui-Simarro, J. M., & Nuez, F. (2008). How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore derived embryogenesis. Physiologia Plantarum, 134(1), 1–12. https://doi.org/10.1111/j.1399-3054.2008.01113.x.
  • Shariatpanahi, M.E., Bal, U., Heberle-Bors E., & Touraev, A. (2006). Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiologia Plantarum, 127(4), 519–534. https://doi.org/10.1111/j.1399-3054.2006.00675.x
  • Testillano, P. S. (2018). Stress-induced microspore embryogenesis in crop plants: Cell totipotency acquisition and embryo development. In: Cánovas F., Lüttge U., Leuschner C., Risueño MC. (eds) Progress in Botany Vol. 81. Progress in Botany, vol 81. Springer, Cham. https://doi.org/10.1007/124_2018_24
  • Taskin, H., Buyukalaca, S., Keles, D., & Ekbic, E. (2011). Induction of microspore-derived embryos by anther culture in selected pepper genotypes. African Journal of Biotechnology. https://doi.org/10.5897/AJB11.2023
  • Testillano, P. S. (2019). Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. Journal of Experimental Botany, 70(11), 2965–2978. https://doi.org/10.1093/jxb/ery464.
  • Trejo-Tapia, G., Amaya, U. M., Morales, G. S., Sanchez, A. D. J., Bonfil, B. M., Monroy, M. R., & Jimenez-Aparicio, A. (2002). The effects of cold-pretreatment, auxins and carbon source on anther culture of rice. Plant Cell, Tissue and Organ Culture, 71, 41–46. https://doi.org/10.1023/A:1016558025840
  • Wang, Y. Y., Sun, C. S., Wang, C. C., & Chien, N. F. (1973). The induction of the pollen plantlets of triticale and Capsicum annuum L. from anther culture. Science Sinica, 16, 147-151.
  • Varnier A.L., Jacquard C., &Clement C. (2009) Programmed cell death and microspore embryogenesis. In: Touraev A., Forster B.P., Jain S.M. (eds) Advances in Haploid Production in higher plants. Springer, Dordrecht. 147–154. https://doi.org/10.1007/978-1-4020-8854-4_11
  • Zeng, A., Yan, J., Song, L., Gao, B., & Li, J. (2015). Effects of ascorbic acid and embryogenic microspore selection on embryogenesis in white cabbage (Brassica oleracea L. var. capitata). The Journal of Horticultural Science and Biotechnology, 90(6), 607-612. https://doi.org/10.1080/14620316.2015.11668722
  • Zur, I., Dubas, E., Golemiec, E., Szechyńska-Hebda, M., Golebiowska, G., & Wedzony, M. (2009). Stress-related variation in anti-oxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of Triticale (×Triticosecale Wittm.). Plant Cell Rep., 28, 1279-1287. https://doi.org/10.1007/s00299-009-0730-2
There are 34 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Research Articles
Authors

Ergün Doğangüzel This is me

Fatma Nur Altındağ

Merve Arefe Yiğit This is me

Şeküre Şebnem Ellialtıoğlu This is me

Nuray Çömlekçioğlu This is me

Project Number 3170610-TÜBİTAK-TEYDEB- AGY300-03
Publication Date December 15, 2021
Published in Issue Year 2021 Volume: 30 Issue: 2

Cite

APA Doğangüzel, E., Altındağ, F. N., Yiğit, M. A., Ellialtıoğlu, Ş. Ş., et al. (2021). In vitro androgenesis in pepper (Capsicum annuum L.) and the affecting factors on success: II. Carbohydrate source and antioxidants. Biotech Studies, 30(2), 92-97. https://doi.org/10.38042/biotechstudies.1000341


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services