Research Article
BibTex RIS Cite
Year 2024, Volume: 33 Issue: 1, 23 - 32, 30.06.2024
https://doi.org/10.38042/biotechstudies.1442001

Abstract

Project Number

GTB 2017/01-BAGEP

References

  • Aksoy, E., Jeong, I. S., & Koiwa, H. (2013). Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level. Plant Physiology, 161(1), 330-345. https://doi.org/10.1104/pp.112.207043
  • Aksoy, E., & Koiwa, H. (2013). Determination of ferric chelate reductase activity in the Arabidopsis thaliana root. Bio-protocol, 3(15), e843-e843. https://doi.org/10.21769/BioProtoc.843
  • Aksoy, E., Yerlikaya, B. A., Ayten, S., & Abudureyimu, B. (2018). Iron uptake mechanisms from the rhizosphere in plants. Turkish Journal of Agriculture-Food Science and Technology, 6(12), 1673-1683. https://doi.org/10.24925/turjaf.v6i12.1673-1683.1326
  • Alam, S., Kamei, S., & Kawai, S. (2001). Effect of iron deficiency on the chemical composition of the xylem sap of barley. Soil Science and Plant Nutrition, 47(3), 643-649. https://doi.org/10.1080/00380768.2001.10408428
  • Bandyopadhyay, T., & Prasad, M. (2021). IRONing out stress problems in crops: a homeostatic perspective. Physiologia Plantarum, 171(4), 559-577. https://doi.org/10.1111/ppl.13184
  • Benlioğlu, B., & Özkan, U. (2015). Bazı arpa çeşitlerinin (Hordeum vulgare L.) çimlenme dönemlerinde farklı dozlardaki tuz stresine tepkilerinin belirlenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 24(2), 109-114. https://doi.org/10.21566/tbmaed.07412
  • Blasco, B., Navarro-León, E., & Ruiz, J.M. (2018). Oxidative stress in relation with micronutrient deficiency or toxicity. In M. A. Hossain, T. Kamiya, D.J. Burritt, L-S. P. Tran, & T. Fujiwara (Eds.), Plant micronutrient use efficiency (pp. 181-194). Academic Press. https://doi.org/10.1016/B978-0-12-812104-7.00011-3
  • Clemens, S., & Weber, M. (2016). The essential role of coumarin secretion for Fe acquisition from alkaline soil. Plant Signaling and Behavior, 11(2), e1114197. https://doi.org/10.1080/15592324.2015.1114197
  • Connolly, E. L., Fett, J. P., & Guerinot, M. L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. The Plant Cell, 14(6), 1347-1357. https://doi.org/10.1105/tpc.001263
  • Çakır S. (2007). Selenyum Toksisitesinin İki Arpa (Hordeum vulgare L.) Çeşitinde (TARM 92, BÜLBÜL 89) Antioksidan Enzim Aktivitesine Etkisi, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Erciyes Üniversitesi, Kayseri.
  • Çatav, Ş.S., Çetin, E., Vural, E., & Bürün, B. (2023). Boron toxicity tolerance in barley may be related to intrinsically higher levels of reactive oxygen species in the shoots. Botanica Serbica, 47(1), 113-124. https://doi.org/10.2298/BOTSERB2301113C
  • Doğru, A. (2019). Bazi arpa genotiplerinde kurşun toleransinin klorofil a floresansi ile değerlendirilmesi. Bartın University International Journal of Natural and Applied Sciences, 2(2), 228-238.
  • Doğru, A., 2020. Evaluation of Heat Shock-Induced Stress Tolerance to Some Abiotic Factors in Barley Seedlings by Chlorophyll a Fluorescence Technique. Sinop Üniversitesi Fen Bilimleri Dergisi, 5(2), 112-124.https://doi.org/10.33484/sinopfbd.630690
  • Erenoglu, B., Eker, S., Cakmak, I., Derici, R., & Römheld, V. (2000). Effect of iron and zinc deficiency on release of phytosiderophores in barley cultivars differing in zinc efficiency. Journal of Plant Nutrition, 23(11-12), 1645-1656. https://doi.org/10.1080/01904160009382130
  • Fan, X., Zhou, X., Chen, H., Tang, M., & Xie, X. (2021). Cross-talks between macro-and micronutrient uptake and signaling in plants. Frontiers in Plant Science, 12, 663477. https://doi.org/10.3389/fpls.2021.663477
  • Gines, M., Baldwin, T., Rashid, A., Bregitzer, P., Maughan, P. J., Jellen, E. N., & Klos, K. E. (2018). Selection of expression reference genes with demonstrated stability in barley among a diverse set of tissues and cultivars. Crop Science, 58(1), 332-341. https://doi.org/10.2135/cropsci2017.07.0443
  • Grillet, L., & Schmidt, W. (2019). Iron acquisition strategies in land plants: not so different after all. New Phytologist, 224(1), 11-18. https://doi.org/10.1111/nph.16005
  • Hindt, M.N., & Guerinot, M.L. (2012). Getting a sense for signals: regulation of the plant iron deficiency response. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(9), 1521-1530. https://doi.org/10.1016/j.bbamcr.2012.03.010
  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347(2), 32.
  • Hua, Y. P., Wang, Y., Zhou, T., Huang, J. Y., & Yue, C. P. (2022). Combined morpho-physiological, ionomic and transcriptomic analyses reveal adaptive responses of allohexaploid wheat (Triticum aestivum L.) to iron deficiency. BMC Plant Biology, 22(1), 234. https://doi.org/10.1186/s12870-022-03627-4
  • Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., & Nishizawa, N. K. (2006). Rice plants take up iron as an Fe3+‐phytosiderophore and as Fe2+. The Plant Journal, 45(3), 335-346. https://doi.org/10.1111/j.1365-313X.2005.02624.x
  • Jiang, Y., Chen, X., Chai, S., Sheng, H., Sha, L., Fan, X., Zeng, J., Kang, H., Zhang, H., Xiao, X., & Zhou, Y. (2021). TpIRT1 from Polish wheat (Triticum polonicum L.) enhances the accumulation of Fe, Mn, Co, and Cd in Arabidopsis. Plant Science, 312, 111058. https://doi.org/10.1016/j.plantsci.2021.111058
  • Jiang, C., Johkan, M., Hohjo, M., Tsukagoshi, S., & Maruo, T. (2017). A correlation analysis on chlorophyll content and SPAD value in tomato leaves. HortResearch, 71(71), 37-42.
  • Jeong, J., & Connolly, E. L. (2009). Iron uptake mechanisms in plants: functions of the FRO family of ferric reductases. Plant science, 176(6), 709-714. https://doi.org/10.1016/j.plantsci.2009.02.011
  • Kanai, M., Hirai, M., Yoshiba, M., Tadano, T., & Higuchi, K. (2009). Iron deficiency causes zinc excess in Zea mays. Soil Science and Plant Nutrition, 55(2), 271-276. https://doi.org/10.1111/j.1747-0765.2008.00350.x
  • Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63, 131-152. https://doi.org/10.1146/annurev-arplant-042811-105522
  • Kobayashi, T., Nakanishi, H., Takahashi, M., Kawasaki, S., Nishizawa, N.K., & Mori, S. (2001). In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta, 212, 864-871. https://doi.org/10.1007/s004250000453
  • Kobayashi, T., Yoshihara, T., Jiang, T., Goto, F., Nakanishi, H., Mori, S., & Nishizawa, N.K. (2003). Combined deficiency of iron and other divalent cations mitigates the symptoms of iron deficiency in tobacco plants. Physiologia Plantarum, 119(3), 400-408. https://doi.org/10.1034/j.1399-3054.2003.00126.x
  • Li, S., Song, Z., Liu, X., Zhou, X., Yang, W., Chen, J., & Chen, R. (2022). Mediation of zinc and iron accumulation in maize by ZmIRT2, a novel iron-regulated transporter. Plant and Cell Physiology, 63(4), 521-534. https://doi.org/10.1093/pcp/pcab177 Li, S., Zhou, X., Huang, Y., Zhu, L., Zhang, S., Zhao, Y., Guo, J., Chen, J., & Chen, R. (2013). Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology, 13(1), 1-14. https://doi.org/10.1186/1471-2229-13-114
  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592. https://doi.org/10.1042/bst0110591
  • Lindsay, W. L., & Schwab, A. P. (1982). The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition, 5(4-7), 821-840. https://doi.org/10.1080/01904168209363012
  • Martín-Barranco, A., Thomine, S., Vert, G., & Zelazny, E. (2021). A quick journey into the diversity of iron uptake strategies in photosynthetic organisms. Plant Signaling and Behavior, 16(11), 1975088. https://doi.org/10.1080/15592324.2021.1975088
  • Mikami, Y., Saito, A., Miwa, E., & Higuchi, K. (2011). Allocation of Fe and ferric chelate reductase activities in mesophyll cells of barley and sorghum under Fe-deficient conditions. Plant Physiology and Biochemistry, 49(5), 513-519. https://doi.org/10.1016/j.plaphy.2011.01.009
  • Mozafar, A. (1997). Distribution of nutrient elements along the maize leaf: Alteration by iron deficiency. Journal of Plant Nutrition, 20(7-8), 999-1005. https://doi.org/10.1080/01904169709365312
  • Murata, Y., Ma, J.F., Yamaji, N., Ueno, D., Nomoto, K., & Iwashita, T. (2006). A specific transporter for iron (III)–phytosiderophore in barley roots. The Plant Journal, 46(4), 563-572. https://doi.org/10.1111/j.1365-313X.2006.02714.x
  • Nikolic, D.B., Nesic, S., Bosnic, D., Kostic, L., Nikolic, M. & Samardzic, J.T. (2019). Silicon alleviates iron deficiency in barley by enhancing expression of strategy II genes and metal redistribution. Frontiers in Plant Science, 10, 416. https://doi.org/10.3389/fpls.2019.00416
  • Nikolic, M. & Pavlovic, J. (2018). Plant responses to iron deficiency and toxicity and iron use efficiency in plants. Oxidative stress in relation with micronutrient deficiency or toxicity. In M. A. Hossain, T. Kamiya, D.J. Burritt, L-S. P. Tran, & T. Fujiwara (Eds.), Plant micronutrient use efficiency (pp. 55-69). Academic Press. https://doi.org/10.1016/B978-0-12-812104-7.00004-6
  • Nozoye, T., Nagasaka, S., Kobayashi, T., Takahashi, M., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H. & Nishizawa, N.K. (2011). Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Journal of Biological Chemistry, 286(7), 5446-5454. https://doi.org/10.1074/jbc.M110.180026
  • Öz M. T. (2012). Microarray based expression profiling of barley under boron stress and cloning of 3H boron tolerance gene. PhD Thesis, Middle East Technical University, Ankara, Türkiye. Panda, B. B., Sharma, S. G., Mohapatra, P. K., & Das, A. (2012). Iron stress induces primary and secondary micronutrient stresses in high yielding tropical rice. Journal of Plant Nutrition, 35(9), 1359-1373. https://doi.org/10.1080/01904167.2012.684128
  • Pavlovic, J., Samardzic, J., Maksimović, V., Timotijevic, G., Stevic, N., Laursen, K.H., Hansen, T.H., Husted, S., Schjoerring, J.K., Liang, Y., & Nikolic, M. (2013). Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytologist, 198(4), 1096-1107. https://doi.org/10.1111/nph.12213
  • Pedas, P., Ytting, C.K., Fuglsang, A.T., Jahn, T.P., Schjoerring, J.K., & Husted, S. (2008). Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiology, 148(1), 455-466. https://doi.org/10.1104/pp.108.118851
  • Pizzio, G. A., Regmi, K., & Gaxiola, R. (2015). Rhizosphere acidification assay. Bio-protocol, 5(23), e1676-e1676. https://doi.org/10.21769/BioProtoc.1676
  • Rai, S., Singh, P.K., Mankotia, S., Swain, J., & Satbhai, S.B. (2021). Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress, 1, 100008. https://doi.org/10.1016/j.stress.2021.100008
  • Reichman, S. M., & Parker, D. R. (2007). Critical evaluation of three indirect assays for quantifying phytosiderophores released by the roots of Poaceae. European Journal of Soil Science, 58(3), 844-853. https://doi.org/10.1111/j.1365-2389.2006.00874.x
  • Robe, K., Izquierdo, E., Vignols, F., Rouached, H., & Dubos, C. (2021). The coumarins: secondary metabolites playing a primary role in plant nutrition and health. Trends in Plant Science, 26(3), 248-259. https://doi.org/10.1016/j.tplants.2020.10.008
  • Santi, S., & Schmidt, W. (2009). Dissecting iron deficiency‐induced proton extrusion in Arabidopsis roots. New Phytologist, 183(4), 1072-1084. https://doi.org/10.1111/j.1469-8137.2009.02908.x
  • Santos, C.S., Ozgur, R., Uzilday, B., Turkan, I., Roriz, M., Rangel, A.O., Carvalho, S.M., & Vasconcelos, M.W. (2019). Understanding the role of the antioxidant system and the tetrapyrrole cycle in iron deficiency chlorosis. Plants, 8(9), 348. https://doi.org/10.3390/plants8090348
  • Sperotto, R. A., Ricachenevsky, F. K., de Abreu Waldow, V., & Fett, J. P. (2012). Iron biofortification in rice: it's a long way to the top. Plant Science, 190, 24-39. https://doi.org/10.1016/j.plantsci.2012.03.004
  • Tabata, R. (2023). Regulation of the iron-deficiency response by IMA/FEP peptide. Frontiers in Plant Science, 14, 1107405. https://doi.org/10.3389/fpls.2023.1107405
  • Torun, B., Kalayci, M., Ozturk, L., Torun, A., Aydin, M., & Cakmak, I. (2002). Differences in Shoot Boron Concentrations, Leaf Symptoms, and Yield of Turkish Barley Cultivars Grown on Boron‐Toxic Soil in Field. Journal of Plant Nutrition, 26(9), 1735-1747. https://doi.org/10.1081/PLN-120023279
  • Vasconcelos, M. W., & Grusak, M. A. (2014). Morpho-physiological parameters affecting iron deficiency chlorosis in soybean (Glycine max L.). Plant and soil, 374, 161-172. https://doi.org/10.1007/s11104-013-1842-6
  • Vasconcelos, M., Eckert, H., Arahana, V., Graef, G., Grusak, M.A., & Clemente, T. (2006). Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Planta, 224, 1116-1128. https://doi.org/10.1007/s00425-006-0293-1
  • Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M.L., Briat, J.F., & Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell, 14(6), 1223-1233. https://doi.org/10.1105/tpc.001388
  • Wairich, A., de Oliveira, B. H. N., Arend, E. B., Duarte, G. L., Ponte, L. R., Sperotto, R. A., Ricachenevsky, F.K., & Fett, J. P. (2019). The combined strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa). Scientific Reports, 9(1), 16144. https://doi.org/10.1038/s41598-019-52502-0
  • Walker, E. L., & Connolly, E. L. (2008). Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Current Opinion in Plant Biology, 11(5), 530-535. https://doi.org/10.1016/j.pbi.2008.06.013
  • Werner, C., & Matile, P. (1985). Accumulation of coumarylglucosides in vacuoles of barley mesophyll protoplasts. Journal of Plant Physiology, 118(3), 237-249. https://doi.org/10.1016/S0176-1617(85)80225-X

Barley preferentially activates strategy-II iron uptake mechanism under iron deficiency

Year 2024, Volume: 33 Issue: 1, 23 - 32, 30.06.2024
https://doi.org/10.38042/biotechstudies.1442001

Abstract

Plants utilize two main strategies for iron (Fe) uptake from the rhizosphere. Strategy-I is based on the reduction of ferric (Fe3+) to ferrous (Fe2+) iron by ferric chelate reductase (FCR) and is mainly observed in dicots. Strategy-II utilizes the complexation of Fe3+ with phytosiderophores secreted from the plant roots and mainly evolved in Gramineous species, including barley (Hordeum vulgare). Recent studies suggest that some species use a combination of both strategies for more efficient Fe uptake. However, the preference of barley for these strategies is not well understood. This study investigated the physiological and biochemical responses of barley under iron deficiency and examined the expression levels of the genes involved in Strategy-I and Strategy-II mechanisms in the roots. Fe deficiency led to decreased root and shoot lengths, fresh and dry weights, and Fe accumulation in the roots. Parallel to the chlorosis observed in the leaves, FCR activity and rhizosphere acidification were also significantly reduced in the roots, while the release of phytosiderophores increased. Furthermore, Strategy-II genes expressed higher than the Strategy-I genes in the roots under Fe deficiency. These findings demonstrate that Strategy-II is more activated than Strategy-I for Fe uptake in barley roots under Fe-deficient conditions.

Supporting Institution

This study was supported by the Niğde Ömer Halisdemir University Research Projects Unit (project number GTB 2017/01-BAGEP) and the COST Association (grant CA19116 “PLANTMETALS”).

Project Number

GTB 2017/01-BAGEP

References

  • Aksoy, E., Jeong, I. S., & Koiwa, H. (2013). Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level. Plant Physiology, 161(1), 330-345. https://doi.org/10.1104/pp.112.207043
  • Aksoy, E., & Koiwa, H. (2013). Determination of ferric chelate reductase activity in the Arabidopsis thaliana root. Bio-protocol, 3(15), e843-e843. https://doi.org/10.21769/BioProtoc.843
  • Aksoy, E., Yerlikaya, B. A., Ayten, S., & Abudureyimu, B. (2018). Iron uptake mechanisms from the rhizosphere in plants. Turkish Journal of Agriculture-Food Science and Technology, 6(12), 1673-1683. https://doi.org/10.24925/turjaf.v6i12.1673-1683.1326
  • Alam, S., Kamei, S., & Kawai, S. (2001). Effect of iron deficiency on the chemical composition of the xylem sap of barley. Soil Science and Plant Nutrition, 47(3), 643-649. https://doi.org/10.1080/00380768.2001.10408428
  • Bandyopadhyay, T., & Prasad, M. (2021). IRONing out stress problems in crops: a homeostatic perspective. Physiologia Plantarum, 171(4), 559-577. https://doi.org/10.1111/ppl.13184
  • Benlioğlu, B., & Özkan, U. (2015). Bazı arpa çeşitlerinin (Hordeum vulgare L.) çimlenme dönemlerinde farklı dozlardaki tuz stresine tepkilerinin belirlenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 24(2), 109-114. https://doi.org/10.21566/tbmaed.07412
  • Blasco, B., Navarro-León, E., & Ruiz, J.M. (2018). Oxidative stress in relation with micronutrient deficiency or toxicity. In M. A. Hossain, T. Kamiya, D.J. Burritt, L-S. P. Tran, & T. Fujiwara (Eds.), Plant micronutrient use efficiency (pp. 181-194). Academic Press. https://doi.org/10.1016/B978-0-12-812104-7.00011-3
  • Clemens, S., & Weber, M. (2016). The essential role of coumarin secretion for Fe acquisition from alkaline soil. Plant Signaling and Behavior, 11(2), e1114197. https://doi.org/10.1080/15592324.2015.1114197
  • Connolly, E. L., Fett, J. P., & Guerinot, M. L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. The Plant Cell, 14(6), 1347-1357. https://doi.org/10.1105/tpc.001263
  • Çakır S. (2007). Selenyum Toksisitesinin İki Arpa (Hordeum vulgare L.) Çeşitinde (TARM 92, BÜLBÜL 89) Antioksidan Enzim Aktivitesine Etkisi, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Erciyes Üniversitesi, Kayseri.
  • Çatav, Ş.S., Çetin, E., Vural, E., & Bürün, B. (2023). Boron toxicity tolerance in barley may be related to intrinsically higher levels of reactive oxygen species in the shoots. Botanica Serbica, 47(1), 113-124. https://doi.org/10.2298/BOTSERB2301113C
  • Doğru, A. (2019). Bazi arpa genotiplerinde kurşun toleransinin klorofil a floresansi ile değerlendirilmesi. Bartın University International Journal of Natural and Applied Sciences, 2(2), 228-238.
  • Doğru, A., 2020. Evaluation of Heat Shock-Induced Stress Tolerance to Some Abiotic Factors in Barley Seedlings by Chlorophyll a Fluorescence Technique. Sinop Üniversitesi Fen Bilimleri Dergisi, 5(2), 112-124.https://doi.org/10.33484/sinopfbd.630690
  • Erenoglu, B., Eker, S., Cakmak, I., Derici, R., & Römheld, V. (2000). Effect of iron and zinc deficiency on release of phytosiderophores in barley cultivars differing in zinc efficiency. Journal of Plant Nutrition, 23(11-12), 1645-1656. https://doi.org/10.1080/01904160009382130
  • Fan, X., Zhou, X., Chen, H., Tang, M., & Xie, X. (2021). Cross-talks between macro-and micronutrient uptake and signaling in plants. Frontiers in Plant Science, 12, 663477. https://doi.org/10.3389/fpls.2021.663477
  • Gines, M., Baldwin, T., Rashid, A., Bregitzer, P., Maughan, P. J., Jellen, E. N., & Klos, K. E. (2018). Selection of expression reference genes with demonstrated stability in barley among a diverse set of tissues and cultivars. Crop Science, 58(1), 332-341. https://doi.org/10.2135/cropsci2017.07.0443
  • Grillet, L., & Schmidt, W. (2019). Iron acquisition strategies in land plants: not so different after all. New Phytologist, 224(1), 11-18. https://doi.org/10.1111/nph.16005
  • Hindt, M.N., & Guerinot, M.L. (2012). Getting a sense for signals: regulation of the plant iron deficiency response. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(9), 1521-1530. https://doi.org/10.1016/j.bbamcr.2012.03.010
  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347(2), 32.
  • Hua, Y. P., Wang, Y., Zhou, T., Huang, J. Y., & Yue, C. P. (2022). Combined morpho-physiological, ionomic and transcriptomic analyses reveal adaptive responses of allohexaploid wheat (Triticum aestivum L.) to iron deficiency. BMC Plant Biology, 22(1), 234. https://doi.org/10.1186/s12870-022-03627-4
  • Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., & Nishizawa, N. K. (2006). Rice plants take up iron as an Fe3+‐phytosiderophore and as Fe2+. The Plant Journal, 45(3), 335-346. https://doi.org/10.1111/j.1365-313X.2005.02624.x
  • Jiang, Y., Chen, X., Chai, S., Sheng, H., Sha, L., Fan, X., Zeng, J., Kang, H., Zhang, H., Xiao, X., & Zhou, Y. (2021). TpIRT1 from Polish wheat (Triticum polonicum L.) enhances the accumulation of Fe, Mn, Co, and Cd in Arabidopsis. Plant Science, 312, 111058. https://doi.org/10.1016/j.plantsci.2021.111058
  • Jiang, C., Johkan, M., Hohjo, M., Tsukagoshi, S., & Maruo, T. (2017). A correlation analysis on chlorophyll content and SPAD value in tomato leaves. HortResearch, 71(71), 37-42.
  • Jeong, J., & Connolly, E. L. (2009). Iron uptake mechanisms in plants: functions of the FRO family of ferric reductases. Plant science, 176(6), 709-714. https://doi.org/10.1016/j.plantsci.2009.02.011
  • Kanai, M., Hirai, M., Yoshiba, M., Tadano, T., & Higuchi, K. (2009). Iron deficiency causes zinc excess in Zea mays. Soil Science and Plant Nutrition, 55(2), 271-276. https://doi.org/10.1111/j.1747-0765.2008.00350.x
  • Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63, 131-152. https://doi.org/10.1146/annurev-arplant-042811-105522
  • Kobayashi, T., Nakanishi, H., Takahashi, M., Kawasaki, S., Nishizawa, N.K., & Mori, S. (2001). In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta, 212, 864-871. https://doi.org/10.1007/s004250000453
  • Kobayashi, T., Yoshihara, T., Jiang, T., Goto, F., Nakanishi, H., Mori, S., & Nishizawa, N.K. (2003). Combined deficiency of iron and other divalent cations mitigates the symptoms of iron deficiency in tobacco plants. Physiologia Plantarum, 119(3), 400-408. https://doi.org/10.1034/j.1399-3054.2003.00126.x
  • Li, S., Song, Z., Liu, X., Zhou, X., Yang, W., Chen, J., & Chen, R. (2022). Mediation of zinc and iron accumulation in maize by ZmIRT2, a novel iron-regulated transporter. Plant and Cell Physiology, 63(4), 521-534. https://doi.org/10.1093/pcp/pcab177 Li, S., Zhou, X., Huang, Y., Zhu, L., Zhang, S., Zhao, Y., Guo, J., Chen, J., & Chen, R. (2013). Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology, 13(1), 1-14. https://doi.org/10.1186/1471-2229-13-114
  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592. https://doi.org/10.1042/bst0110591
  • Lindsay, W. L., & Schwab, A. P. (1982). The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition, 5(4-7), 821-840. https://doi.org/10.1080/01904168209363012
  • Martín-Barranco, A., Thomine, S., Vert, G., & Zelazny, E. (2021). A quick journey into the diversity of iron uptake strategies in photosynthetic organisms. Plant Signaling and Behavior, 16(11), 1975088. https://doi.org/10.1080/15592324.2021.1975088
  • Mikami, Y., Saito, A., Miwa, E., & Higuchi, K. (2011). Allocation of Fe and ferric chelate reductase activities in mesophyll cells of barley and sorghum under Fe-deficient conditions. Plant Physiology and Biochemistry, 49(5), 513-519. https://doi.org/10.1016/j.plaphy.2011.01.009
  • Mozafar, A. (1997). Distribution of nutrient elements along the maize leaf: Alteration by iron deficiency. Journal of Plant Nutrition, 20(7-8), 999-1005. https://doi.org/10.1080/01904169709365312
  • Murata, Y., Ma, J.F., Yamaji, N., Ueno, D., Nomoto, K., & Iwashita, T. (2006). A specific transporter for iron (III)–phytosiderophore in barley roots. The Plant Journal, 46(4), 563-572. https://doi.org/10.1111/j.1365-313X.2006.02714.x
  • Nikolic, D.B., Nesic, S., Bosnic, D., Kostic, L., Nikolic, M. & Samardzic, J.T. (2019). Silicon alleviates iron deficiency in barley by enhancing expression of strategy II genes and metal redistribution. Frontiers in Plant Science, 10, 416. https://doi.org/10.3389/fpls.2019.00416
  • Nikolic, M. & Pavlovic, J. (2018). Plant responses to iron deficiency and toxicity and iron use efficiency in plants. Oxidative stress in relation with micronutrient deficiency or toxicity. In M. A. Hossain, T. Kamiya, D.J. Burritt, L-S. P. Tran, & T. Fujiwara (Eds.), Plant micronutrient use efficiency (pp. 55-69). Academic Press. https://doi.org/10.1016/B978-0-12-812104-7.00004-6
  • Nozoye, T., Nagasaka, S., Kobayashi, T., Takahashi, M., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H. & Nishizawa, N.K. (2011). Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Journal of Biological Chemistry, 286(7), 5446-5454. https://doi.org/10.1074/jbc.M110.180026
  • Öz M. T. (2012). Microarray based expression profiling of barley under boron stress and cloning of 3H boron tolerance gene. PhD Thesis, Middle East Technical University, Ankara, Türkiye. Panda, B. B., Sharma, S. G., Mohapatra, P. K., & Das, A. (2012). Iron stress induces primary and secondary micronutrient stresses in high yielding tropical rice. Journal of Plant Nutrition, 35(9), 1359-1373. https://doi.org/10.1080/01904167.2012.684128
  • Pavlovic, J., Samardzic, J., Maksimović, V., Timotijevic, G., Stevic, N., Laursen, K.H., Hansen, T.H., Husted, S., Schjoerring, J.K., Liang, Y., & Nikolic, M. (2013). Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytologist, 198(4), 1096-1107. https://doi.org/10.1111/nph.12213
  • Pedas, P., Ytting, C.K., Fuglsang, A.T., Jahn, T.P., Schjoerring, J.K., & Husted, S. (2008). Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiology, 148(1), 455-466. https://doi.org/10.1104/pp.108.118851
  • Pizzio, G. A., Regmi, K., & Gaxiola, R. (2015). Rhizosphere acidification assay. Bio-protocol, 5(23), e1676-e1676. https://doi.org/10.21769/BioProtoc.1676
  • Rai, S., Singh, P.K., Mankotia, S., Swain, J., & Satbhai, S.B. (2021). Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress, 1, 100008. https://doi.org/10.1016/j.stress.2021.100008
  • Reichman, S. M., & Parker, D. R. (2007). Critical evaluation of three indirect assays for quantifying phytosiderophores released by the roots of Poaceae. European Journal of Soil Science, 58(3), 844-853. https://doi.org/10.1111/j.1365-2389.2006.00874.x
  • Robe, K., Izquierdo, E., Vignols, F., Rouached, H., & Dubos, C. (2021). The coumarins: secondary metabolites playing a primary role in plant nutrition and health. Trends in Plant Science, 26(3), 248-259. https://doi.org/10.1016/j.tplants.2020.10.008
  • Santi, S., & Schmidt, W. (2009). Dissecting iron deficiency‐induced proton extrusion in Arabidopsis roots. New Phytologist, 183(4), 1072-1084. https://doi.org/10.1111/j.1469-8137.2009.02908.x
  • Santos, C.S., Ozgur, R., Uzilday, B., Turkan, I., Roriz, M., Rangel, A.O., Carvalho, S.M., & Vasconcelos, M.W. (2019). Understanding the role of the antioxidant system and the tetrapyrrole cycle in iron deficiency chlorosis. Plants, 8(9), 348. https://doi.org/10.3390/plants8090348
  • Sperotto, R. A., Ricachenevsky, F. K., de Abreu Waldow, V., & Fett, J. P. (2012). Iron biofortification in rice: it's a long way to the top. Plant Science, 190, 24-39. https://doi.org/10.1016/j.plantsci.2012.03.004
  • Tabata, R. (2023). Regulation of the iron-deficiency response by IMA/FEP peptide. Frontiers in Plant Science, 14, 1107405. https://doi.org/10.3389/fpls.2023.1107405
  • Torun, B., Kalayci, M., Ozturk, L., Torun, A., Aydin, M., & Cakmak, I. (2002). Differences in Shoot Boron Concentrations, Leaf Symptoms, and Yield of Turkish Barley Cultivars Grown on Boron‐Toxic Soil in Field. Journal of Plant Nutrition, 26(9), 1735-1747. https://doi.org/10.1081/PLN-120023279
  • Vasconcelos, M. W., & Grusak, M. A. (2014). Morpho-physiological parameters affecting iron deficiency chlorosis in soybean (Glycine max L.). Plant and soil, 374, 161-172. https://doi.org/10.1007/s11104-013-1842-6
  • Vasconcelos, M., Eckert, H., Arahana, V., Graef, G., Grusak, M.A., & Clemente, T. (2006). Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Planta, 224, 1116-1128. https://doi.org/10.1007/s00425-006-0293-1
  • Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M.L., Briat, J.F., & Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell, 14(6), 1223-1233. https://doi.org/10.1105/tpc.001388
  • Wairich, A., de Oliveira, B. H. N., Arend, E. B., Duarte, G. L., Ponte, L. R., Sperotto, R. A., Ricachenevsky, F.K., & Fett, J. P. (2019). The combined strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa). Scientific Reports, 9(1), 16144. https://doi.org/10.1038/s41598-019-52502-0
  • Walker, E. L., & Connolly, E. L. (2008). Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Current Opinion in Plant Biology, 11(5), 530-535. https://doi.org/10.1016/j.pbi.2008.06.013
  • Werner, C., & Matile, P. (1985). Accumulation of coumarylglucosides in vacuoles of barley mesophyll protoplasts. Journal of Plant Physiology, 118(3), 237-249. https://doi.org/10.1016/S0176-1617(85)80225-X
There are 56 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Plant Biotechnology, Plant Physiology, Plant Cell and Molecular Biology
Journal Section Research Articles
Authors

Emre Aksoy 0000-0002-9410-2715

Project Number GTB 2017/01-BAGEP
Early Pub Date February 23, 2024
Publication Date June 30, 2024
Published in Issue Year 2024 Volume: 33 Issue: 1

Cite

APA Aksoy, E. (2024). Barley preferentially activates strategy-II iron uptake mechanism under iron deficiency. Biotech Studies, 33(1), 23-32. https://doi.org/10.38042/biotechstudies.1442001


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services