Year 2025,
Volume: 34 Issue: SI, 20 - 29
Aysegul Inam
,
Furkan Ozan Coven
,
Tulay Oncu Oner
References
- Abdel-Mohsen, A. M., Jancar, J., Massoud, D., Fohlerova, Z., Elhadidy, H., Spotz, Z., & Hebeish, A. (2016). Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties. International Journal of Pharmaceutics, 510(1), 86-99. http://doi.org/10.1016/j.ijpharm.2016.06.003
- Afshari, M., Rahimmalek, M., & Miroliaei, M. (2018). Variation in polyphenolic profiles, antioxidant and antimicrobial activity of different Achillea species as natural sources of antiglycative compounds. Chemistry and Biodiversity, 15(8), e1800075. http://doi.org/10.1002/cbdv.201800075
- Afshari, M., & Rahimmalek, M. (2021). Variation in essential oil composition, anatomical, and antioxidant characteristics of Achillea filipendulina Lam. as affected by different phenological stages. Journal of Essential Oil Research, 33(3), 283–298. https://doi.org/10.1080/10412905.2021.1885510
- Alam, M. A., Muhammad, G., Khan, M. N., Mofijur, M., Lv, Y., Xiong, W., & Xu, J. (2021). Choline chloride-based deep eutectic solvents as green extractants for the isolation of phenolic compounds from biomass. Journal of Cleaner Production, 309, 127445. http://doi.org/10.1016/j.jclepro.2021.127445
- Almohasin, J. A., Balag, J., Miral, V. G., Moreno, R. V., Tongco, L. J., & Lopez, E. C. R. (2023). Green solvents for liquid–liquid extraction: Recent advances and future trends. Engineering Proceedings, 56(1), 174. https://doi.org/10.3390/asec2023-16278
- Aminkhani, A., Sharifi, S., & Ekhtiyari, S. (2020). Achillea filipendulina Lam.: Chemical constituents and antimicrobial activities of essential oil of stem, leaf, and flower. Chemistry and Biodiversity, 17, e2000133. http://doi.org/10.1002/cbdv.202000133
- Asghari, B., Mafakheri, S., Zengin, G., Dinparast, L., & Bahadori, M. B. (2020). In-depth study of phytochemical composition, antioxidant activity, enzyme inhibitory and antiproliferative properties of Achillea filipendulina: A good candidate for designing biologically-active food products. Food Measure, 14, 2196–2208. https://doi.org/10.1007/s11694-020-00466-5
- Asnaashari, S., Marefat, S., Vatankhah, A. M., Moghaddam, S. B., Delazar, A., & Hamedeyazdan, S. (2023). Bioactivity assays and phytochemical analysis upon Achillea filipendulina, focusing on xanthine oxidase inhibitory and antimalarial properties. Beni-Suef University Journal of Basic and Applied Sciences, 12, 46. https://doi.org/10.1186/s43088-023-00385-6
- Dokhani, S., Durance, T. D., Cottrell, T., & Mazza, G. (2012). Drying effects on major volatile and phenolic components of Achillea filipendulina Lam. Journal of Essential Oil-Bearing Plants, 15(6), 885-894. https://doi.org/10.1080/0972060X.2012.10662590
- Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
- Ebadollahi, A. (2017). Chemical composition, acaricidal and insecticidal effects of essential oil from Achillea filipendulina against two arthropod pests; Oryzaephilus surinamensis and Tetranychus urticae. Toxin Reviews, 36(2), 132-137. https://doi.org/10.1080/15569543.2016.1250101
- García, A., Rodríguez-Juan, E., Rodríguez-Gutiérrez, G., Rios, J. J., & Fernández-Bolaños, J. (2016). Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chemistry, 197, 554-561. https://doi.org/10.1016/j.foodchem.2015.10.131
- Gharibi, S., Tabatabaei, B. E. S., Saeidi, G., & Goli, S. A. H. (2016). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Applied Biochemistry and Biotechnology, 178, 796–809. https://doi.org/10.1007/s12010-015-1909-3
- Gharibi, S., Tabatabaei, B. E. S., & Saeidi, G., (2015). Comparison of essential oil composition, flavonoid content and antioxidant activity in eight Achillea species. Journal of Essential Oil-Bearing Plants, 18(6), 1382-1394. https://doi.org/110.1080/0972060X.2014.981600
- Hamzeloo, M. M., Mahmoud, M., & Mahboobeh, I. (2019). Programmed cell death in breast adeno-carcinoma induced by Achillea filipendulina. International Journal of Phytomedicines and Related Industries, 11(4), 435-439. http://dx.doi.org/10.5958/0975-6892.2019.00057.1
- Hasimi, N., Kızıl, S., & Tolan, V. (2015). Essential oil components, microelement contents and antioxidant effects of Nepeta italica L. and Achillea filipendulina Lam. Journal of Essential Oil-Bearing Plants, 18(3), 678-686. https://doi.org/10.1080/0972060X.2015.1010597
- Kaur, H., Bose, S. K., Vadekeetil, A., & Harjai, K. (2017). Essential oil composition and antibacterial activity of flowers of Achillea filipendulina. International Journal of Pharmaceutical Sciences and Drug Research, 182-186. https://doi.org/10.25004/IJPSDR.2017.090405
- Khan, S., Richa, Kaur, H., & Jhamta, R. (2019). Evaluation of antioxidant potential and phytochemical characterization using GCMS analysis of bioactive compounds of Achillea filipendulina (L.) leaves. Journal of Pharmacognosy and Phytochemistry, 8(3), 258-265.
- Khanavi, M., Gheidarloo, R., Sadati, N., Ardekani, M. R. S., Nabavi, S. M. B., Tavajohi, S., & Ostad, S. N. (2012). Cytotoxicity of fucosterol containing fraction of marine algae against breast and colon carcinoma cell line. Pharmacognosy Magazine, 8(29), 60. https://doi.org/10.4103/0973-1296.93327
- Liu, B., Bussmann, R.W., Batsatsashvili, K., Kikvidze, Z., Akobirshoeva, A., Ghorbani, A., & Kool, A. (2020). Achillea asiatica Serg. Achillea filipendulina Lam. Achillea millefolium L. Achillea setacea Waldst. & Kit. Asteraceae. K. Batsatsashvili, Z. Kikvidze & R. W. Bussmann (Eds.) Ethnobotany of the Mountain Regions of Central Asia and Altai (pp. 33–43). Springer. https://doi.org/10.1007/978-3-319-77087-1_11-1
- Łukawski, M., Dałek, P., Borowik, T., Foryś, A., Langner, M., Witkiewicz, W., & Przybyło, M. (2020). New oral liposomal vitamin C formulation: Properties and bioavailability. Journal of Liposome Research, 30(3), 227-234. https://doi.org/10.1080/08982104.2019.1630642
- Maltaş, E., Uysal, A., Yildiz, S., & Durak, Y. (2010). Evaluation of antioxidant and antimicrobial activity of Vitex agnus-castus L. Fresenius Environmental Bulletin, 19, 3094-3099.
- Miceli, N., Trovato, A., Dugo, P., Cacciola, F., Donato, P., Marino, A., Bellinghieri, V., La Barbera, T. M., Güvenç, A., & Taviano, M. F. (2009). Comparative analysis of flavonoid profile, antioxidant and antimicrobial activity of the berries of Juniperus communis L. var. communis and Juniperus communis L. var. saxatilis Pall. from Turkey. Journal of Agricultural and Food Chemistry, 57(15), 6570-6577. https://doi.org/10.1021/jf9012295
- Molan, A. L., & Mahdy, A. S. (2014). Iraqi medicinal plants: Total flavonoid contents, free-radical scavenging and bacterial beta-glucuronidase inhibition activities. IOSR Journal of Dental and Medical Sciences, 13(5), 72-77. https://doi.org/10.9790/0853-13527277
- Nawrot, J., Budzianowski, J., Nowak, G., Micek, I., Budzianowska, A., & Gornowicz-Porowska, J. (2021). Biologically active compounds in Stizolophus balsamita inflorescences: Isolation, phytochemical characterization and effects on the skin biophysical parameters. International Journal of Molecular Sciences, 22(9), 4428. https://doi.org/10.3390/ijms22094428
- Pawlicka, M. A., Zmorzyński, S., Popek-Marciniec, S., & Filip, A. A. (2022). The effects of genistein at different concentrations on MCF-7 breast cancer cells and BJ dermal fibroblasts. International Journal of Molecular Sciences, 23(20), 12360. https://doi.org/10.3390/ijms232012360
- Radomir, A. M., Temelie, M., Moldovan, R. C., Stoica, R., Petrache, A. M., Helepciuc, F. E., ... & Radu, M. (2023). Effect of gamma irradiation on phenolic content, biological activity, and cellular ultrastructure of Salvia officinalis L. cultured in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 154(1), 141-160. https://doi.org/10.1007/s11240-023-02522-6
- Salehi, N. (2020). Chemical composition of the essential oil from aerial parts of Achillea filipendulina Lam. from Iran. Journal of Chemistry Letters, 1(2020), 160–163.
https://doi.org/10.22034/JCHEMLETT.2021.271704.1017
- Saravanan, M., Barik, S. K., MubarakAli, D., Prakash, P., & Pugazhendhi, A. (2018). Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microbial Pathogenesis, 116, 221-226. https://doi.org/10.1016/j.micpath.2018.01.038
- Seyrekoğlu, F., & Temiz, H. (2020). Effect of extraction conditions on the phenolic content and DPPH radical scavenging activity of Hypericum perforatum L. Turkish Journal of Agriculture-Food Science and Technology, 8(1), 226-229. https://doi.org/10.24925/turjaf.v8i1.226-229.3013
- Singh, C., Anand, S. K., Upadhyay, R., Pandey, N., Kumar, P., Singh, D., Tiwari, P., Saini, R., Tiwari, K. N., Mishra, S. K., & Tilak, R. (2023). Green synthesis of silver nanoparticles by root extract of Premna integrifolia L. and evaluation of its cytotoxic and antibacterial activity. Materials Chemistry and Physics, 297, 127413. https://doi.org/10.1016/j.matchemphys.2023.127413
- Şirin, S. (2023). Evaluation of anticancerogenic effect of flavonoid rich Verbascum gypsicola Vural & Aydoğdu methanolic extract against SH-SY5Y cell line. Biotech Studies, 33(1), 1-12.
https://doi.org/10.38042/biotechstudies.1383424
- Tunç, T., Akın, Ş., Aykaç, O., Hepokur, C., Duran, S., & Özpınar, H. (2024). Antioxidant, antimicrobial, and anticancer effects of Achillea filipendulina L. against colon cancer. Asian Pacific Journal of Tropical Biomedicine, 14(12), 540-550. https://doi.org/10.4103/apjtb.apjtb_515_24
- Vojoudi, S., Sefidkon, F., & Salehi Shanjani, P. (2024). Essential oil variation of Achillea filipendulina populations in farm condition. Journal of Essential Oil Research, 36(2), 164-172.
https://doi.org/10.1080/10412905.2024.2320347
- Xie, J. H., Jin, M. L., Morris, G. A., Zha, X. Q., Chen, H. Q., Yi, Y., ... & Xie, M. Y. (2016). Advances on bioactive polysaccharides from medicinal plants. Critical Reviews in Food Science and Nutrition, 56(sup1), S60-S84. http://doi.org/10.1080/10408398.2015.1069255
- Ye, Z., Liang, Z., Mi, Q., & Guo, Y. (2020). Limonene terpenoid obstructs human bladder cancer cell (T24 cell line) growth by inducing cellular apoptosis, caspase activation, G2/M phase cell cycle arrest and stops cancer metastasis. Journal of the Balkan Union of Oncology, 25, 280-285.
Comparison of antibacterial and cytotoxic activities of Achillea filipendulina plant extracts obtained using deep eutectic solvent and ethanol
Year 2025,
Volume: 34 Issue: SI, 20 - 29
Aysegul Inam
,
Furkan Ozan Coven
,
Tulay Oncu Oner
Abstract
Achillea filipendulina is a flowering perennial herb belonging to Asteraceae family that grows in meadows and roadsides. It is used in traditional medicine and is reported to have antimicrobial and antioxidant activities. Deep eutectic solvent (DES) is considered as alternative-systems due to its non-toxic structure. This study aimed to compare the antibacterial and cytotoxic activities of DES and ethanol extracts of flowers of A. filipendulina. In antibacterial assays, MIC values of DES and ethanol extracts were found to be 12.5 and 6.25 mg/mL for E. coli, 25 and 12.5 mg/mL for S. aureus, respectively. In the disk diffusion method, ethanol extracts are more effective than DES extracts. The IC50 value of ethanol extract was 239.1±2.6 μg/mL while that of DES extract was 1272.6±101.3 μg/mL in T24 bladder cancer cell line after 48 h. In the healthy BJ dermal fibroblast cell line, the IC50 values of ethanol and DES extracts were 426.7±9.8 and 1304.3±102.8 μg/mL, respectively after 48 h. The cytotoxic effect of both extracts on T24 cells is greater than BJ cells. Although ethanol extracts have higher cytotoxic and antibacterial activities, there is potential for different results to be obtained after extractions using different DES components due to their properties.
References
- Abdel-Mohsen, A. M., Jancar, J., Massoud, D., Fohlerova, Z., Elhadidy, H., Spotz, Z., & Hebeish, A. (2016). Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties. International Journal of Pharmaceutics, 510(1), 86-99. http://doi.org/10.1016/j.ijpharm.2016.06.003
- Afshari, M., Rahimmalek, M., & Miroliaei, M. (2018). Variation in polyphenolic profiles, antioxidant and antimicrobial activity of different Achillea species as natural sources of antiglycative compounds. Chemistry and Biodiversity, 15(8), e1800075. http://doi.org/10.1002/cbdv.201800075
- Afshari, M., & Rahimmalek, M. (2021). Variation in essential oil composition, anatomical, and antioxidant characteristics of Achillea filipendulina Lam. as affected by different phenological stages. Journal of Essential Oil Research, 33(3), 283–298. https://doi.org/10.1080/10412905.2021.1885510
- Alam, M. A., Muhammad, G., Khan, M. N., Mofijur, M., Lv, Y., Xiong, W., & Xu, J. (2021). Choline chloride-based deep eutectic solvents as green extractants for the isolation of phenolic compounds from biomass. Journal of Cleaner Production, 309, 127445. http://doi.org/10.1016/j.jclepro.2021.127445
- Almohasin, J. A., Balag, J., Miral, V. G., Moreno, R. V., Tongco, L. J., & Lopez, E. C. R. (2023). Green solvents for liquid–liquid extraction: Recent advances and future trends. Engineering Proceedings, 56(1), 174. https://doi.org/10.3390/asec2023-16278
- Aminkhani, A., Sharifi, S., & Ekhtiyari, S. (2020). Achillea filipendulina Lam.: Chemical constituents and antimicrobial activities of essential oil of stem, leaf, and flower. Chemistry and Biodiversity, 17, e2000133. http://doi.org/10.1002/cbdv.202000133
- Asghari, B., Mafakheri, S., Zengin, G., Dinparast, L., & Bahadori, M. B. (2020). In-depth study of phytochemical composition, antioxidant activity, enzyme inhibitory and antiproliferative properties of Achillea filipendulina: A good candidate for designing biologically-active food products. Food Measure, 14, 2196–2208. https://doi.org/10.1007/s11694-020-00466-5
- Asnaashari, S., Marefat, S., Vatankhah, A. M., Moghaddam, S. B., Delazar, A., & Hamedeyazdan, S. (2023). Bioactivity assays and phytochemical analysis upon Achillea filipendulina, focusing on xanthine oxidase inhibitory and antimalarial properties. Beni-Suef University Journal of Basic and Applied Sciences, 12, 46. https://doi.org/10.1186/s43088-023-00385-6
- Dokhani, S., Durance, T. D., Cottrell, T., & Mazza, G. (2012). Drying effects on major volatile and phenolic components of Achillea filipendulina Lam. Journal of Essential Oil-Bearing Plants, 15(6), 885-894. https://doi.org/10.1080/0972060X.2012.10662590
- Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
- Ebadollahi, A. (2017). Chemical composition, acaricidal and insecticidal effects of essential oil from Achillea filipendulina against two arthropod pests; Oryzaephilus surinamensis and Tetranychus urticae. Toxin Reviews, 36(2), 132-137. https://doi.org/10.1080/15569543.2016.1250101
- García, A., Rodríguez-Juan, E., Rodríguez-Gutiérrez, G., Rios, J. J., & Fernández-Bolaños, J. (2016). Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chemistry, 197, 554-561. https://doi.org/10.1016/j.foodchem.2015.10.131
- Gharibi, S., Tabatabaei, B. E. S., Saeidi, G., & Goli, S. A. H. (2016). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Applied Biochemistry and Biotechnology, 178, 796–809. https://doi.org/10.1007/s12010-015-1909-3
- Gharibi, S., Tabatabaei, B. E. S., & Saeidi, G., (2015). Comparison of essential oil composition, flavonoid content and antioxidant activity in eight Achillea species. Journal of Essential Oil-Bearing Plants, 18(6), 1382-1394. https://doi.org/110.1080/0972060X.2014.981600
- Hamzeloo, M. M., Mahmoud, M., & Mahboobeh, I. (2019). Programmed cell death in breast adeno-carcinoma induced by Achillea filipendulina. International Journal of Phytomedicines and Related Industries, 11(4), 435-439. http://dx.doi.org/10.5958/0975-6892.2019.00057.1
- Hasimi, N., Kızıl, S., & Tolan, V. (2015). Essential oil components, microelement contents and antioxidant effects of Nepeta italica L. and Achillea filipendulina Lam. Journal of Essential Oil-Bearing Plants, 18(3), 678-686. https://doi.org/10.1080/0972060X.2015.1010597
- Kaur, H., Bose, S. K., Vadekeetil, A., & Harjai, K. (2017). Essential oil composition and antibacterial activity of flowers of Achillea filipendulina. International Journal of Pharmaceutical Sciences and Drug Research, 182-186. https://doi.org/10.25004/IJPSDR.2017.090405
- Khan, S., Richa, Kaur, H., & Jhamta, R. (2019). Evaluation of antioxidant potential and phytochemical characterization using GCMS analysis of bioactive compounds of Achillea filipendulina (L.) leaves. Journal of Pharmacognosy and Phytochemistry, 8(3), 258-265.
- Khanavi, M., Gheidarloo, R., Sadati, N., Ardekani, M. R. S., Nabavi, S. M. B., Tavajohi, S., & Ostad, S. N. (2012). Cytotoxicity of fucosterol containing fraction of marine algae against breast and colon carcinoma cell line. Pharmacognosy Magazine, 8(29), 60. https://doi.org/10.4103/0973-1296.93327
- Liu, B., Bussmann, R.W., Batsatsashvili, K., Kikvidze, Z., Akobirshoeva, A., Ghorbani, A., & Kool, A. (2020). Achillea asiatica Serg. Achillea filipendulina Lam. Achillea millefolium L. Achillea setacea Waldst. & Kit. Asteraceae. K. Batsatsashvili, Z. Kikvidze & R. W. Bussmann (Eds.) Ethnobotany of the Mountain Regions of Central Asia and Altai (pp. 33–43). Springer. https://doi.org/10.1007/978-3-319-77087-1_11-1
- Łukawski, M., Dałek, P., Borowik, T., Foryś, A., Langner, M., Witkiewicz, W., & Przybyło, M. (2020). New oral liposomal vitamin C formulation: Properties and bioavailability. Journal of Liposome Research, 30(3), 227-234. https://doi.org/10.1080/08982104.2019.1630642
- Maltaş, E., Uysal, A., Yildiz, S., & Durak, Y. (2010). Evaluation of antioxidant and antimicrobial activity of Vitex agnus-castus L. Fresenius Environmental Bulletin, 19, 3094-3099.
- Miceli, N., Trovato, A., Dugo, P., Cacciola, F., Donato, P., Marino, A., Bellinghieri, V., La Barbera, T. M., Güvenç, A., & Taviano, M. F. (2009). Comparative analysis of flavonoid profile, antioxidant and antimicrobial activity of the berries of Juniperus communis L. var. communis and Juniperus communis L. var. saxatilis Pall. from Turkey. Journal of Agricultural and Food Chemistry, 57(15), 6570-6577. https://doi.org/10.1021/jf9012295
- Molan, A. L., & Mahdy, A. S. (2014). Iraqi medicinal plants: Total flavonoid contents, free-radical scavenging and bacterial beta-glucuronidase inhibition activities. IOSR Journal of Dental and Medical Sciences, 13(5), 72-77. https://doi.org/10.9790/0853-13527277
- Nawrot, J., Budzianowski, J., Nowak, G., Micek, I., Budzianowska, A., & Gornowicz-Porowska, J. (2021). Biologically active compounds in Stizolophus balsamita inflorescences: Isolation, phytochemical characterization and effects on the skin biophysical parameters. International Journal of Molecular Sciences, 22(9), 4428. https://doi.org/10.3390/ijms22094428
- Pawlicka, M. A., Zmorzyński, S., Popek-Marciniec, S., & Filip, A. A. (2022). The effects of genistein at different concentrations on MCF-7 breast cancer cells and BJ dermal fibroblasts. International Journal of Molecular Sciences, 23(20), 12360. https://doi.org/10.3390/ijms232012360
- Radomir, A. M., Temelie, M., Moldovan, R. C., Stoica, R., Petrache, A. M., Helepciuc, F. E., ... & Radu, M. (2023). Effect of gamma irradiation on phenolic content, biological activity, and cellular ultrastructure of Salvia officinalis L. cultured in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 154(1), 141-160. https://doi.org/10.1007/s11240-023-02522-6
- Salehi, N. (2020). Chemical composition of the essential oil from aerial parts of Achillea filipendulina Lam. from Iran. Journal of Chemistry Letters, 1(2020), 160–163.
https://doi.org/10.22034/JCHEMLETT.2021.271704.1017
- Saravanan, M., Barik, S. K., MubarakAli, D., Prakash, P., & Pugazhendhi, A. (2018). Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microbial Pathogenesis, 116, 221-226. https://doi.org/10.1016/j.micpath.2018.01.038
- Seyrekoğlu, F., & Temiz, H. (2020). Effect of extraction conditions on the phenolic content and DPPH radical scavenging activity of Hypericum perforatum L. Turkish Journal of Agriculture-Food Science and Technology, 8(1), 226-229. https://doi.org/10.24925/turjaf.v8i1.226-229.3013
- Singh, C., Anand, S. K., Upadhyay, R., Pandey, N., Kumar, P., Singh, D., Tiwari, P., Saini, R., Tiwari, K. N., Mishra, S. K., & Tilak, R. (2023). Green synthesis of silver nanoparticles by root extract of Premna integrifolia L. and evaluation of its cytotoxic and antibacterial activity. Materials Chemistry and Physics, 297, 127413. https://doi.org/10.1016/j.matchemphys.2023.127413
- Şirin, S. (2023). Evaluation of anticancerogenic effect of flavonoid rich Verbascum gypsicola Vural & Aydoğdu methanolic extract against SH-SY5Y cell line. Biotech Studies, 33(1), 1-12.
https://doi.org/10.38042/biotechstudies.1383424
- Tunç, T., Akın, Ş., Aykaç, O., Hepokur, C., Duran, S., & Özpınar, H. (2024). Antioxidant, antimicrobial, and anticancer effects of Achillea filipendulina L. against colon cancer. Asian Pacific Journal of Tropical Biomedicine, 14(12), 540-550. https://doi.org/10.4103/apjtb.apjtb_515_24
- Vojoudi, S., Sefidkon, F., & Salehi Shanjani, P. (2024). Essential oil variation of Achillea filipendulina populations in farm condition. Journal of Essential Oil Research, 36(2), 164-172.
https://doi.org/10.1080/10412905.2024.2320347
- Xie, J. H., Jin, M. L., Morris, G. A., Zha, X. Q., Chen, H. Q., Yi, Y., ... & Xie, M. Y. (2016). Advances on bioactive polysaccharides from medicinal plants. Critical Reviews in Food Science and Nutrition, 56(sup1), S60-S84. http://doi.org/10.1080/10408398.2015.1069255
- Ye, Z., Liang, Z., Mi, Q., & Guo, Y. (2020). Limonene terpenoid obstructs human bladder cancer cell (T24 cell line) growth by inducing cellular apoptosis, caspase activation, G2/M phase cell cycle arrest and stops cancer metastasis. Journal of the Balkan Union of Oncology, 25, 280-285.