Research Article
BibTex RIS Cite

CO2 ve sıcaklık seviyelerinin glifosat aktivitesi ve yedi yabancı ot türünün büyümesi üzerindeki etkileri

Year 2025, Volume: 65 Issue: 1, 59 - 71, 01.04.2025
https://doi.org/10.16955/bitkorb.1570221

Abstract

Çevresel koşullardaki değişikliklerin yabancı otların büyümesi ve uygulanan herbisitlere duyarlılıkları üzerinde büyük etkisi vardır. Bu çalışmada, CO2 ve sıcaklık seviyelerinin glifosat (480 g/l Glyphosate Isopropylamin Tuzu) aktivitesi ile yedi yabancı ot türünün büyümesi üzerindeki etkileri incelenmiştir. Üç sıcaklık seviyesi (kontrol veya normal sıcaklık 26/16 °C (14/10 gün/gece), normal sıcaklık +3 °C, 29/19 °C ve normal sıcaklık +6 °C, 32/22 °C) ve dört CO2 seviyesi (kontrol 400 ppm, 600 ppm, 800 ppm ve 1000 ppm) test edilmiştir. Altı doz glifosat: i) önerilen dozun ¼’ü, ii) ½’si, iii) tam doz (1440 g a.i./ha), iv) önerilen dozun 2 katı, v) 4 katı ve vi) 8 katı, 4-6 yaprak aşamasında uygulanmıştır. Genel olarak, artan CO2 ve sıcaklık seviyelerinde, yabancı otların büyümesini artırmıştır. Yabancı ot türlerinin çoğu için en uygun sıcaklık ve CO2 seviyeleri sırasıyla 29 oC ve 800 ppm ile 1000 ppm olarak tespit edilmiştir. Echinochloa colonum (L.) Link., Amaranthus retroflexus L., Amaranthus palmeri S. Watson, Portulaca oleracea L., Solanum nigrum L., Sorghum halepense (L.) Pers. ve Physalis angulata L. için ED50 (etkili doz 50) değeri, iklim değişikliğiyle birlikte bazı yabancı otların glifosata karşı tolerans geliştirme olasılığının yüksek olduğunu göstermiştir. Sıcaklık ve CO2 konsantrasyonundaki artışla birlikte ED değeri de artmakta olup, bu durum yabancı otların kontrolü için daha yüksek herbisit dozlarına ihtiyaç duyulacağına işaret etmektedir. Sonuçta ileriki yıllarda tarımsal alanlarda daha fazla herbisit kullanımı üreticilerin ekonomik olarak daha fazla masraf yaşamasına ve yabancı otlarda dayanıklılık sorununun çok daha yüksek seviyelere çıkacağına sebebiyet verebilecektir.

References

  • Alarcón‐Reverte R., García A., Watson S.B., Abdallah I., Sabaté S., Hernández M.J., Dayan F.E., Fischer A.J., 2015. Concerted action of target‐site mutations and high EPSPS activity in glyphosate‐resistant junglerice (Echinochloa colona) from California. Pest Management Science, 71 (7), 996-1007. doi: 10.1002/ps.3878
  • Asseng S., Ewert F., Martre P., Rötter R.P., Lobell D.B., Cammarano D., Kimball B.A., Ottman M.J., Wall G.W., White J.W., Reynolds M.P., 2014. Rising temperatures reduce global wheat production. Nature Climate Change, 5, 143-147. https://doi.org/10.1038/nclimate2470
  • Bajwa A.A., Farooq M., Al-Sadi A.M., Nawaz A., Jabran K., Siddique K.H., 2020. Impact of climate change on biology and management of wheat pests. Crop Protection, 137, 105304. https://doi.org/10.1016/j.cropro.2020.105304
  • Balah M.A., Balah A.M., 2022. Growth and ecological characteristics of Physalis angulata invasive weed species in several invaded communities. Biologia, 77 (2), 325-338.
  • Bell V.D., Oliver L.R., 1979. Germination, control, and competition of cutleaf groundcherry (Physalis angulata) in soybeans (Glycine max). Weed Science, 27, 133-138.
  • Blumenthal D.M., Kray J.A., 2014. Climate change, plant traits and invasion in natural and agricultural ecosystems. In: Invasive Species and Global Climate Change. Ziska L., Dukes J. (Eds.). CABI, Oxfordshire, pp. 62-74.
  • Carter D.R., Peterson K.M., 1983. Effects of a CO₂-enriched atmosphere on the growth and competitive interaction of a C₃ and a C₄ grass. Oecologia, 58 (2), 188-193. doi: 10.1007/BF00399215
  • Carvalho S., Goncalves Netto A., Nicolai M., Cavenaghi A., Lopez-Ovejero R., Christoffoleti, P., 2015. Detection of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in agricultural areas of Mato Grosso, Brazil. Planta Daninha, 33 (3), 579-586.
  • Chahal P.S., Varanasi V.K., Jugulam M., Jhala A.J., 2017. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Nebraska: confirmation, EPSPS gene amplification, and response to POST corn and soybean herbicides. Weed Technology, 31, 80-93.
  • Chauhan B.S., Johnson D.E., 2009. Seed germination ecology of Portulaca oleracea L.: an important weed of rice and upland crops. Annals of Applied Biology, 155 (1), 61-69.
  • Costea M., Weaver S.E., Tardif J., 2004. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Canadian Journal of Plant Science. 84 (2), 631-668. https://doi.org/10.4141/P02-183
  • Culpepper A.S., Grey T.L., Vencill W.K., Kichler J.M., Webster T.M., Brown S.M., York A.C., Davis J.W., Hanna W.W., 2006. Glyphosate resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Science, 54, 620-626.
  • DaMatta F.M., Grandis A., Arenque B.C., Buckeridge M.S., 2010. Impacts of climate changes on crop physiology and food quality. Food Research International, 43 (7), 1814-1823. doi:10.1016/j.foodres.2009.11.001
  • Dong H., Ma Y., Wu H., Jiang W., Ma X., 2020. Germination of Solanum nigrum L. (Black Nightshade) in response to different abiotic factors. Planta Daninha, 38, 1-12.
  • Edmonds J.M., Chweya J.A., 1997. Black nightshades. Solanum nigrum L. and related species. Promoting the conservation and use of underutilized and neglected crops. 15. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy.
  • Elad Y., Pertot I., 2014. Climate change impacts on plant pathogens and plant diseases. Journal of Crop Improvement, 28, 99-139. doi:10.1080/15427528.2014.865412
  • Guo P., Al-Khatib K., 2003. Temperature effects on germination and growth of Amaranthus retroflexus, A. palmeri, and A. rudis. Weed Science, 51 (6), 869-875. http://www.jstor.org/stable/4046740
  • Hamim H., 2011. Photosynthesis of C₃ and C₄ species in response to increased CO₂ concentration and drought stress. HAYATI Journal of Biosciences, 12, 131–138. doi: 10.1016/S1978-3019(16)30340-0
  • Holm L.R.G., Plucknett D.L., Pancho J.V., Herberger J.P., 1977. The world's worst weeds: distribution and biology. Honolulu, Hawaii, USA: University Press of Hawaii, 621 pp.
  • IPCC, 2002. The Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf. (accessed date: 30.09.2024).
  • IPCC, 2007. The Intergovernmental Panel on Climate Change. Impacts, Adaptations and Vulnerability. https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf. (accessed date: 30.09.2024).
  • IPCC, 2020. The Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf. (accessed date: 14.04.2021).
  • Jabran K., Doğan M.N., 2018. High carbon dioxide concentration and elevated temperature impact the growth of weeds but do not change the efficacy of glyphosate. Pest Management Science, 74 (3), 766-771. doi: 10.1002/ps.4788
  • Jabran K., Doğan M.N., 2020. Elevated CO₂, temperature, and nitrogen levels impact growth and development of invasive weeds in the Mediterranean region. Journal of the Science of Food and Agriculture, 100 (13), 4893-4900. doi: 10.1002/jsfa.10550
  • Jabran K., Florentine S., Chauhan B.S., 2020. Impacts of climate change on weeds, insect pests, plant diseases, and crop yields: Synthesis. In: Crop Protection Under Changing Climate. Jabran K., Florentine S., Chauhan B.S., (Eds.). Springer International, USA. 189-195. https://doi.org/10.1007/978-3-030-46111-9
  • Khan A.M., Mobli A., Werth J.A., Chauhan B.S., 2022. Germination and seed persistence of Amaranthus retroflexus and Amaranthus viridis: two emerging weeds in Australian cotton and other summer crops. PLoS One, 17 (2), e0263798. doi: 10.1371/journal.pone.0263798
  • Knezevic S.Z., Streibig J.C., Ritz C., 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technology, 21 (3), 840–848.
  • Küpper A., Borgato E.A., Patterson E.L., Netto A.G., Nicolai M., de Carvalho S.J., Nissen S.J., Gaines T.A., Christoffoleti P.J., 2017. Multiple resistance to glyphosate and acetolactate synthase inhibitors in Amaranthus palmeri identified in Brazil. Weed Science, 65 (3), 317-326. https://www.jstor.org/stable/26420845
  • Manea A., Leishman M.R., Downey P.O., 2011. Exotic C₄ grasses have increased tolerance to glyphosate under elevated carbon dioxide. Weed Science, 59 (1), 28–36. https://doi.org/10.1614/WS-D-10-00080.1
  • Matzrafi M., Scarabel L., Milani A., Iamonico D., Torra J., Recasens J. Montull J.M., Llenes J.M., Gazoulis., Tataridas A., Rubin B., Pardo G., Cirujeda A., Marí A.I., Mennan H., Kanatas P., Doğan M.N., Beffa R., Travlos I., 2023. Amaranthus palmeri S. Watson: a new threat to agriculture in Europe and the Mediterranean region. Weed Research, 65 (1), 1–16. https://doi.org/10.1111/wre.12596
  • Misra V., Shrivastava A.K., Mall A.K., Solomon S., Singh A.K., Ansari M.I., 2019. Can sugarcane cope with increasing atmospheric CO₂ concentration? Australian Journal of Crop Science, 13 (5), 780–784. doi: 10.21475/ajcs.19.13.05.p1582
  • Mohseni-Moghadam M., Schroeder J., Heerema R., Ashigh J., 2013. Resistance to glyphosate in Palmer amaranth (Amaranthus palmeri) populations from New Mexico pecan orchards. Weed Technology, 27 (1), 85–91. http://www.jstor.org/stable/23358311
  • Mooney H.A., Canadell J., Chapin III F.S., Ehleringer J.R., Körner C., McMurtrie R.E., Parton W.J., Pitelka L.F., Schulze E.D., 1999. Ecosystem physiology responses to global change. In: The Terrestrial Biosphere and Global Change. Walker B., Steffen W., Canadell J., Ingran J. (Eds.). Cambridge University Press, Cambridge, UK, 141–189.
  • Mueller T.C., Massey J.H., Hayes R.M., Main C.L., Stewart C.N., 2003. Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.). Journal of Agricultural and Food Chemistry, 51 (3), 680-684. doi: 10.1021/jf026006k
  • Norsworthy J.K., Griffith G.M., Scott R.C., Smith K.L., Oliver L.R., 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technology, 22 (1), 108–113. http://www.jstor.org/stable/25195001
  • Oerke E.C., 2006. Crop losses to pests. The Journal of Agricultural Science, 144 (1), 31-43. doi: https://doi.org/10.1017/S0021859605005708
  • Olesen J.E., Bindi M., 2002. Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16 (4), 239–262. https://doi.org/10.1016/S1161-0301(02)00004-7
  • Peerzada A.M., Bajwa A.A., Ali H.H., Chauhan B.S., 2016. Biology, impact, and management of Echinochloa colona (L.) Link. Crop Protection, 83, 56-66.
  • Pernicová N., Urban O., Čáslavský J., Kolář T., Rybníček M., Sochová I., Peñuelas J., Bošeľa M., Trnka M., 2024. Impacts of elevated CO₂ levels and temperature on photosynthesis and stomatal closure along an altitudinal gradient are counteracted by the rising atmospheric vapor pressure deficit. Science of the Total Environment, 921, 171173. doi: 10.1016/j.scitotenv.2024.171173
  • Rao A.N., 2021. Echinochloa colona and Echinochloa crus-galli. In: Biology and Management of Problematic Crop Weed Species. Chauhan B.S., (Ed.). Academic Press, 197-239 pp.
  • Roger E., Duursma D.E., Downey P.O., Gallagher R.V., Hughes L., Steel J., Johnson S.B., Leishman M.R., 2015. A tool to assess potential for alien plant establishment and expansion under climate change. Journal of Environmental Management, 159, 121-127. doi: 10.1016/j.jenvman.2015.05.039
  • Safavi M., Rezvani M., Zaefarian F., Golmohammadzadeh S., Sindel B.M., 2023. Seed germination requirements of Amaranthus retroflexus L. populations exposed to environmental factors. Botany, 101 (4), 99-111. https://doi.org/10.1139/cjb-2022-0077
  • Sosnoskie L.M., Kichler J.M., Wallace R.D., Culpepper A.S., 2011. Multiple resistance in Palmer amaranth to glyphosate and pyrithiobac confirmed in Georgia. Weed Science, 59 (3), 321-325.
  • Ulloa S.M., Datta A., Bruening C., Neilson B., Miller J., Gogos G., Knezevic S.Z., 2011. Maize response to broadcast flaming at different growth stages: effects on growth, yield and yield components. European Journal of Agronomy, 34 (1), 10–19.
  • Werth J., Walker S., Thornby D., Boucher L., 2011. A decade of glyphosate-resistant cotton in Australia: what has changed?. Pakistan Journal of Weed Science Research, 18, 671-676.
  • Valerio M., Tomecek M.B., Lovelli S., Ziska L.H., 2011. Quantifying the effect of drought on carbon dioxide-induced changes in competition between a C₃ crop (tomato) and a C₄ weed (Amaranthus retroflexus). Weed Research, 51 (6), 591-600. doi: 10.1111/j.1365-3180.2011.00874.x
  • Vila-Aiub M.M., Gundel P.E., Yu Q., Powles S.B., 2013. Glyphosate resistance in Sorghum halepense and Lolium rigidum is reduced at suboptimal growing temperatures. Pest Management Science, 69 (2), 228-232. doi: 10.1002/ps.3464
  • Yang Y., Tilman D., Jin Z., Smith P., Barrett C.B., Zhu Y.G., Burney J., D’Odorico P., Fantke P., Fargione J., Finlay J.C., Rulli M.C., Sloat L., Jan van Groenigen K., West P.C., Ziska L., Michalak A.M., Clim-Ag Team, Lobell D.B., Clark M., Colquhoun J., Garg T., Garrett K.A., Geels C., Hernandez R.R., Herrero M., Hutchison W.D., Jain M., Jungers J.M., Liu B., Mueller N.D., Ortiz-Bobea A., Schewe J., Song J., Verheyen J., Vitousek P., Wada Y., Xia L., Zhang X., Zhuang M., 2024. Climate change exacerbates the environmental impacts of agriculture. Science, 385 (6713), eadn3747. doi: 10.1126/science.adn3747
  • Ziska L.H., Faulkner S.S., Lydon J., 2004. Changes in biomass and root ratio of field-grown Canada thistle (Cirsium arvense), a noxious, invasive weed, with elevated CO₂: implications for control with glyphosate. Weed Science, 52, 584–588. doi: 10.1614/WS-03-161R
  • Ziska L.H., McConnell L.L., 2016. Climate change, carbon dioxide, and pest biology: monitor, mitigate, manage. Journal of Agricultural and Food Chemistry, 64 (1), 6–12. doi: 10.1021/jf506101h

Effects of CO2 and temperature levels on glyphosate activity and growth of seven weed species

Year 2025, Volume: 65 Issue: 1, 59 - 71, 01.04.2025
https://doi.org/10.16955/bitkorb.1570221

Abstract

Changes in environmental conditions have a major impact on weed growth and their susceptibility to applied herbicides. We studied the effects of CO2 and temperature levels on the glyphosate (480 g/l Glyphosate Isopropylamin salt) activity and growth of seven weed species. Three temperature levels (control or normal temperature 26/16 °C (14/10 day/night), normal temperature + 3°C i.e., 29/19 °C and normal temperature + 6 °C i.e., 32/22 °C), and four CO2 levels (control i.e., 400 ppm, 600 ppm, 800 ppm, and 1000 ppm) were tested. Six doses of glyphosate were: i) ¼, ii) ½, iii) full dose (1440 g a.i./ha), iv) 2-times, v) 4-times, and vi) 8-times of the recommended dose, at 4-6 leaf stage. Generally, the increase in CO2 and temperature improved weed growth. For most weed species, the most favourable temperature and CO2 levels were 29 oC and 800 ppm to 1000 ppm. The ED50 (effective dose 50) value for Echinochloa colonum (L.) Link., Amaranthus retroflexus L., Amaranthus palmeri S. Watson, Portulacaa oleracea L., Solanum nigrum L., Sorghum halepense (L.) Pers. and Physalis angulata L. showed that some weeds will likely become tolerant to glyphosate with climate change. With increasing temperature and CO2 concentration, ED value increases, meaning higher herbicide doses are required to control these weeds. As a result, using more herbicides in agricultural areas in the coming years will cause producers to experience more costs and the herbicide resistance problem in weeds will increase to much higher levels.

References

  • Alarcón‐Reverte R., García A., Watson S.B., Abdallah I., Sabaté S., Hernández M.J., Dayan F.E., Fischer A.J., 2015. Concerted action of target‐site mutations and high EPSPS activity in glyphosate‐resistant junglerice (Echinochloa colona) from California. Pest Management Science, 71 (7), 996-1007. doi: 10.1002/ps.3878
  • Asseng S., Ewert F., Martre P., Rötter R.P., Lobell D.B., Cammarano D., Kimball B.A., Ottman M.J., Wall G.W., White J.W., Reynolds M.P., 2014. Rising temperatures reduce global wheat production. Nature Climate Change, 5, 143-147. https://doi.org/10.1038/nclimate2470
  • Bajwa A.A., Farooq M., Al-Sadi A.M., Nawaz A., Jabran K., Siddique K.H., 2020. Impact of climate change on biology and management of wheat pests. Crop Protection, 137, 105304. https://doi.org/10.1016/j.cropro.2020.105304
  • Balah M.A., Balah A.M., 2022. Growth and ecological characteristics of Physalis angulata invasive weed species in several invaded communities. Biologia, 77 (2), 325-338.
  • Bell V.D., Oliver L.R., 1979. Germination, control, and competition of cutleaf groundcherry (Physalis angulata) in soybeans (Glycine max). Weed Science, 27, 133-138.
  • Blumenthal D.M., Kray J.A., 2014. Climate change, plant traits and invasion in natural and agricultural ecosystems. In: Invasive Species and Global Climate Change. Ziska L., Dukes J. (Eds.). CABI, Oxfordshire, pp. 62-74.
  • Carter D.R., Peterson K.M., 1983. Effects of a CO₂-enriched atmosphere on the growth and competitive interaction of a C₃ and a C₄ grass. Oecologia, 58 (2), 188-193. doi: 10.1007/BF00399215
  • Carvalho S., Goncalves Netto A., Nicolai M., Cavenaghi A., Lopez-Ovejero R., Christoffoleti, P., 2015. Detection of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in agricultural areas of Mato Grosso, Brazil. Planta Daninha, 33 (3), 579-586.
  • Chahal P.S., Varanasi V.K., Jugulam M., Jhala A.J., 2017. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Nebraska: confirmation, EPSPS gene amplification, and response to POST corn and soybean herbicides. Weed Technology, 31, 80-93.
  • Chauhan B.S., Johnson D.E., 2009. Seed germination ecology of Portulaca oleracea L.: an important weed of rice and upland crops. Annals of Applied Biology, 155 (1), 61-69.
  • Costea M., Weaver S.E., Tardif J., 2004. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Canadian Journal of Plant Science. 84 (2), 631-668. https://doi.org/10.4141/P02-183
  • Culpepper A.S., Grey T.L., Vencill W.K., Kichler J.M., Webster T.M., Brown S.M., York A.C., Davis J.W., Hanna W.W., 2006. Glyphosate resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Science, 54, 620-626.
  • DaMatta F.M., Grandis A., Arenque B.C., Buckeridge M.S., 2010. Impacts of climate changes on crop physiology and food quality. Food Research International, 43 (7), 1814-1823. doi:10.1016/j.foodres.2009.11.001
  • Dong H., Ma Y., Wu H., Jiang W., Ma X., 2020. Germination of Solanum nigrum L. (Black Nightshade) in response to different abiotic factors. Planta Daninha, 38, 1-12.
  • Edmonds J.M., Chweya J.A., 1997. Black nightshades. Solanum nigrum L. and related species. Promoting the conservation and use of underutilized and neglected crops. 15. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy.
  • Elad Y., Pertot I., 2014. Climate change impacts on plant pathogens and plant diseases. Journal of Crop Improvement, 28, 99-139. doi:10.1080/15427528.2014.865412
  • Guo P., Al-Khatib K., 2003. Temperature effects on germination and growth of Amaranthus retroflexus, A. palmeri, and A. rudis. Weed Science, 51 (6), 869-875. http://www.jstor.org/stable/4046740
  • Hamim H., 2011. Photosynthesis of C₃ and C₄ species in response to increased CO₂ concentration and drought stress. HAYATI Journal of Biosciences, 12, 131–138. doi: 10.1016/S1978-3019(16)30340-0
  • Holm L.R.G., Plucknett D.L., Pancho J.V., Herberger J.P., 1977. The world's worst weeds: distribution and biology. Honolulu, Hawaii, USA: University Press of Hawaii, 621 pp.
  • IPCC, 2002. The Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf. (accessed date: 30.09.2024).
  • IPCC, 2007. The Intergovernmental Panel on Climate Change. Impacts, Adaptations and Vulnerability. https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf. (accessed date: 30.09.2024).
  • IPCC, 2020. The Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf. (accessed date: 14.04.2021).
  • Jabran K., Doğan M.N., 2018. High carbon dioxide concentration and elevated temperature impact the growth of weeds but do not change the efficacy of glyphosate. Pest Management Science, 74 (3), 766-771. doi: 10.1002/ps.4788
  • Jabran K., Doğan M.N., 2020. Elevated CO₂, temperature, and nitrogen levels impact growth and development of invasive weeds in the Mediterranean region. Journal of the Science of Food and Agriculture, 100 (13), 4893-4900. doi: 10.1002/jsfa.10550
  • Jabran K., Florentine S., Chauhan B.S., 2020. Impacts of climate change on weeds, insect pests, plant diseases, and crop yields: Synthesis. In: Crop Protection Under Changing Climate. Jabran K., Florentine S., Chauhan B.S., (Eds.). Springer International, USA. 189-195. https://doi.org/10.1007/978-3-030-46111-9
  • Khan A.M., Mobli A., Werth J.A., Chauhan B.S., 2022. Germination and seed persistence of Amaranthus retroflexus and Amaranthus viridis: two emerging weeds in Australian cotton and other summer crops. PLoS One, 17 (2), e0263798. doi: 10.1371/journal.pone.0263798
  • Knezevic S.Z., Streibig J.C., Ritz C., 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technology, 21 (3), 840–848.
  • Küpper A., Borgato E.A., Patterson E.L., Netto A.G., Nicolai M., de Carvalho S.J., Nissen S.J., Gaines T.A., Christoffoleti P.J., 2017. Multiple resistance to glyphosate and acetolactate synthase inhibitors in Amaranthus palmeri identified in Brazil. Weed Science, 65 (3), 317-326. https://www.jstor.org/stable/26420845
  • Manea A., Leishman M.R., Downey P.O., 2011. Exotic C₄ grasses have increased tolerance to glyphosate under elevated carbon dioxide. Weed Science, 59 (1), 28–36. https://doi.org/10.1614/WS-D-10-00080.1
  • Matzrafi M., Scarabel L., Milani A., Iamonico D., Torra J., Recasens J. Montull J.M., Llenes J.M., Gazoulis., Tataridas A., Rubin B., Pardo G., Cirujeda A., Marí A.I., Mennan H., Kanatas P., Doğan M.N., Beffa R., Travlos I., 2023. Amaranthus palmeri S. Watson: a new threat to agriculture in Europe and the Mediterranean region. Weed Research, 65 (1), 1–16. https://doi.org/10.1111/wre.12596
  • Misra V., Shrivastava A.K., Mall A.K., Solomon S., Singh A.K., Ansari M.I., 2019. Can sugarcane cope with increasing atmospheric CO₂ concentration? Australian Journal of Crop Science, 13 (5), 780–784. doi: 10.21475/ajcs.19.13.05.p1582
  • Mohseni-Moghadam M., Schroeder J., Heerema R., Ashigh J., 2013. Resistance to glyphosate in Palmer amaranth (Amaranthus palmeri) populations from New Mexico pecan orchards. Weed Technology, 27 (1), 85–91. http://www.jstor.org/stable/23358311
  • Mooney H.A., Canadell J., Chapin III F.S., Ehleringer J.R., Körner C., McMurtrie R.E., Parton W.J., Pitelka L.F., Schulze E.D., 1999. Ecosystem physiology responses to global change. In: The Terrestrial Biosphere and Global Change. Walker B., Steffen W., Canadell J., Ingran J. (Eds.). Cambridge University Press, Cambridge, UK, 141–189.
  • Mueller T.C., Massey J.H., Hayes R.M., Main C.L., Stewart C.N., 2003. Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.). Journal of Agricultural and Food Chemistry, 51 (3), 680-684. doi: 10.1021/jf026006k
  • Norsworthy J.K., Griffith G.M., Scott R.C., Smith K.L., Oliver L.R., 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technology, 22 (1), 108–113. http://www.jstor.org/stable/25195001
  • Oerke E.C., 2006. Crop losses to pests. The Journal of Agricultural Science, 144 (1), 31-43. doi: https://doi.org/10.1017/S0021859605005708
  • Olesen J.E., Bindi M., 2002. Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16 (4), 239–262. https://doi.org/10.1016/S1161-0301(02)00004-7
  • Peerzada A.M., Bajwa A.A., Ali H.H., Chauhan B.S., 2016. Biology, impact, and management of Echinochloa colona (L.) Link. Crop Protection, 83, 56-66.
  • Pernicová N., Urban O., Čáslavský J., Kolář T., Rybníček M., Sochová I., Peñuelas J., Bošeľa M., Trnka M., 2024. Impacts of elevated CO₂ levels and temperature on photosynthesis and stomatal closure along an altitudinal gradient are counteracted by the rising atmospheric vapor pressure deficit. Science of the Total Environment, 921, 171173. doi: 10.1016/j.scitotenv.2024.171173
  • Rao A.N., 2021. Echinochloa colona and Echinochloa crus-galli. In: Biology and Management of Problematic Crop Weed Species. Chauhan B.S., (Ed.). Academic Press, 197-239 pp.
  • Roger E., Duursma D.E., Downey P.O., Gallagher R.V., Hughes L., Steel J., Johnson S.B., Leishman M.R., 2015. A tool to assess potential for alien plant establishment and expansion under climate change. Journal of Environmental Management, 159, 121-127. doi: 10.1016/j.jenvman.2015.05.039
  • Safavi M., Rezvani M., Zaefarian F., Golmohammadzadeh S., Sindel B.M., 2023. Seed germination requirements of Amaranthus retroflexus L. populations exposed to environmental factors. Botany, 101 (4), 99-111. https://doi.org/10.1139/cjb-2022-0077
  • Sosnoskie L.M., Kichler J.M., Wallace R.D., Culpepper A.S., 2011. Multiple resistance in Palmer amaranth to glyphosate and pyrithiobac confirmed in Georgia. Weed Science, 59 (3), 321-325.
  • Ulloa S.M., Datta A., Bruening C., Neilson B., Miller J., Gogos G., Knezevic S.Z., 2011. Maize response to broadcast flaming at different growth stages: effects on growth, yield and yield components. European Journal of Agronomy, 34 (1), 10–19.
  • Werth J., Walker S., Thornby D., Boucher L., 2011. A decade of glyphosate-resistant cotton in Australia: what has changed?. Pakistan Journal of Weed Science Research, 18, 671-676.
  • Valerio M., Tomecek M.B., Lovelli S., Ziska L.H., 2011. Quantifying the effect of drought on carbon dioxide-induced changes in competition between a C₃ crop (tomato) and a C₄ weed (Amaranthus retroflexus). Weed Research, 51 (6), 591-600. doi: 10.1111/j.1365-3180.2011.00874.x
  • Vila-Aiub M.M., Gundel P.E., Yu Q., Powles S.B., 2013. Glyphosate resistance in Sorghum halepense and Lolium rigidum is reduced at suboptimal growing temperatures. Pest Management Science, 69 (2), 228-232. doi: 10.1002/ps.3464
  • Yang Y., Tilman D., Jin Z., Smith P., Barrett C.B., Zhu Y.G., Burney J., D’Odorico P., Fantke P., Fargione J., Finlay J.C., Rulli M.C., Sloat L., Jan van Groenigen K., West P.C., Ziska L., Michalak A.M., Clim-Ag Team, Lobell D.B., Clark M., Colquhoun J., Garg T., Garrett K.A., Geels C., Hernandez R.R., Herrero M., Hutchison W.D., Jain M., Jungers J.M., Liu B., Mueller N.D., Ortiz-Bobea A., Schewe J., Song J., Verheyen J., Vitousek P., Wada Y., Xia L., Zhang X., Zhuang M., 2024. Climate change exacerbates the environmental impacts of agriculture. Science, 385 (6713), eadn3747. doi: 10.1126/science.adn3747
  • Ziska L.H., Faulkner S.S., Lydon J., 2004. Changes in biomass and root ratio of field-grown Canada thistle (Cirsium arvense), a noxious, invasive weed, with elevated CO₂: implications for control with glyphosate. Weed Science, 52, 584–588. doi: 10.1614/WS-03-161R
  • Ziska L.H., McConnell L.L., 2016. Climate change, carbon dioxide, and pest biology: monitor, mitigate, manage. Journal of Agricultural and Food Chemistry, 64 (1), 6–12. doi: 10.1021/jf506101h
There are 50 citations in total.

Details

Primary Language English
Subjects Herbology
Journal Section Research Article
Authors

Olcay Bozdoğan 0000-0001-6636-805X

Khawar Jabran 0000-0001-8512-3330

Nihat Tursun 0000-0002-8765-0326

Yücel Karaman 0000-0002-6551-7030

Early Pub Date March 27, 2025
Publication Date April 1, 2025
Submission Date October 21, 2024
Acceptance Date January 7, 2025
Published in Issue Year 2025 Volume: 65 Issue: 1

Cite

APA Bozdoğan, O., Jabran, K., Tursun, N., Karaman, Y. (2025). Effects of CO2 and temperature levels on glyphosate activity and growth of seven weed species. Plant Protection Bulletin, 65(1), 59-71. https://doi.org/10.16955/bitkorb.1570221
AMA Bozdoğan O, Jabran K, Tursun N, Karaman Y. Effects of CO2 and temperature levels on glyphosate activity and growth of seven weed species. Plant Protection Bulletin. April 2025;65(1):59-71. doi:10.16955/bitkorb.1570221
Chicago Bozdoğan, Olcay, Khawar Jabran, Nihat Tursun, and Yücel Karaman. “Effects of CO2 and Temperature Levels on Glyphosate Activity and Growth of Seven Weed Species”. Plant Protection Bulletin 65, no. 1 (April 2025): 59-71. https://doi.org/10.16955/bitkorb.1570221.
EndNote Bozdoğan O, Jabran K, Tursun N, Karaman Y (April 1, 2025) Effects of CO2 and temperature levels on glyphosate activity and growth of seven weed species. Plant Protection Bulletin 65 1 59–71.
IEEE O. Bozdoğan, K. Jabran, N. Tursun, and Y. Karaman, “Effects of CO2 and temperature levels on glyphosate activity and growth of seven weed species”, Plant Protection Bulletin, vol. 65, no. 1, pp. 59–71, 2025, doi: 10.16955/bitkorb.1570221.
ISNAD Bozdoğan, Olcay et al. “Effects of CO2 and Temperature Levels on Glyphosate Activity and Growth of Seven Weed Species”. Plant Protection Bulletin 65/1 (April 2025), 59-71. https://doi.org/10.16955/bitkorb.1570221.
JAMA Bozdoğan O, Jabran K, Tursun N, Karaman Y. Effects of CO2 and temperature levels on glyphosate activity and growth of seven weed species. Plant Protection Bulletin. 2025;65:59–71.
MLA Bozdoğan, Olcay et al. “Effects of CO2 and Temperature Levels on Glyphosate Activity and Growth of Seven Weed Species”. Plant Protection Bulletin, vol. 65, no. 1, 2025, pp. 59-71, doi:10.16955/bitkorb.1570221.
Vancouver Bozdoğan O, Jabran K, Tursun N, Karaman Y. Effects of CO2 and temperature levels on glyphosate activity and growth of seven weed species. Plant Protection Bulletin. 2025;65(1):59-71.

136481365013649