Research Article
BibTex RIS Cite

Complex Network Analysis Approach to Examining Undergraduate Program Preferences

Year 2019, Volume: 8 Issue: 1, 176 - 186, 12.03.2019
https://doi.org/10.17798/bitlisfen.448039

Abstract

In
this study, we analyzed undergraduate program preferences of students by using
complex network analysis techniques. We collected program preferences data from
the YokAtlas portal provided by the Council of Higher Education using a web
crawler we developed. We constructed a kind of co-occurrence network we called
co-preference network of 622 nodes and 6,136 edges from the collected raw data.
We performed a comprehensive exploratory complex network analysis on the
co-preference network using Cytoscape and NodeXL tools. Using several node
centrality measures, we identified the most popular programs that students
frequently preferred together with other programs. In addition, we observed the
clusters of programs embedded in the network using several network community
detection methods. Finally, we performed a structure analysis to compare our
network to a corresponding random network, and we showed that our network had
the common characteristic properties that many real-world networks exhibit.

References

  • ÖSYS. 2018. ÖSYS: Öğrenci Seçme ve Yerleştirme Sistemi. http://www.osym.gov.tr/TR,8832/hakkinda.html (Erişim Tarihi: 30.06.2018).
  • Briggs S., Wilson A. 2007. Which university? A study of the influence of cost and information factors on Scottish undergraduate choice, Journal of Higher Education Policy and Management, 29 (1): 57-72.
  • Daily C.M., Farewell S., Kumar G. 2010. Factors Influencing the University Selection of International Students, Academy of Educational Leadership Journal, 14 (3): 59-75.
  • Abubakar B., Shanka T., Muuka G.N. 2010. Tertiary education: an investigation of location selection criteria and preferences by international students–The case of two Australian universities, Journal of Marketing for Higher Education, 20 (1): 49-68.
  • Ağaoğlu M., Yurtkoru E.S. 2013. A Research on Students' University and Program Preference Criteria, Öneri Dergisi, 10 (40): 115-124.
  • Özgüven N. 2011. Vakıf Üniversitesi Tercihinin Analitik Hiyerarşik Süreci ile Belirlenmesi, Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (30): 279-290.
  • YÖK Atlas. 2018. Yükseköğretim Program Atlası. https://yokatlas.yok.gov.tr/ (Erişim Tarihi: 30.06.2018).
  • Salunke S.S. 2014. Selenium Webdriver in Python: Learn with Examples, CreateSpace Independent Publishing Platform. 86s.
  • lxml. 2018. lxml - XML and HTML with Python. https://lxml.de/ (Erişim Tarihi: 30.06.2018).
  • Zweig K.A. 2016. Network Analysis Literacy: A Practical Approach to the Analysis of Networks, Springer-Verlag. 535s. Austria.
  • Tunalı V. 2016. Sosyal Ağ Analizine Giriş, Nobel Akademik Yayıncılık. 200s. Ankara.
  • Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. 2003. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, Genome Research, 13 (11): 2498-2504.
  • Hansen D.L., Shneiderman B., Smith M.A. 2011. Analyzing Social Media Networks with NodeXL: Insights from a Connected World, Morgan Kaufmann. Boston.
  • Fruchterman T.M.J., Reingold E.M. 1991. Graph Drawing by Force-directed Placement, Software: Practice and Experience, 21 (11): 1129-1164.
  • Erdös P., Rényi A. 1959. On Random Graphs, Publicationes Mathematicae Debrecen, 6: 290-297.
  • Clauset A., Newman M., Moore C. 2004. Finding community structure in very large networks, Physical Review E, 70 (6): 66-111.
  • Wakita K., Tsurumi T. 2007. Finding community structure in mega-scale social networks: [extended abstract], 16th international conference on World Wide Web, pp1275-1276, Banff, Alberta, Canada.

Yükseköğretim Programı Tercihlerinin İncelenmesinde Karmaşık Ağ Analizi Yaklaşımı

Year 2019, Volume: 8 Issue: 1, 176 - 186, 12.03.2019
https://doi.org/10.17798/bitlisfen.448039

Abstract

Bu
çalışmada, karmaşık ağ analizi teknikleri kullanarak, öğrencilerin
yükseköğretim programı tercihlerini analiz ettik. Program tercihleri verisini,
kendi geliştirdiğimiz bir web sayfası tarama aracı kullanarak, Yükseköğretim
Kurulu tarafından sağlanan YökAtlas portalından topladık. Toplanan ham veriden
622 düğüm ve 6.136 kenara sahip, birlikte tercih edilme ağı olarak
adlandırdığımız bir çeşit birliktelik ağı oluşturduk. Cytoscape ve NodeXL
araçlarını kullanarak, bu ağ üzerinde keşif türünden kapsamlı bir karmaşık ağ
analizi gerçekleştirdik. Çeşitli düğüm merkezilik ölçütleri kullanarak,
öğrencilerin diğer programlarla birlikte sıklıkla tercih ettiği en popüler
programları tespit ettik. Ayrıca, çeşitli topluluk tespiti yöntemleri kullanarak,
ağ içerisinde yerleşik program kümelerini gözlemledik. Son olarak, ağımızı,
karşılık gelen rasgele ağ ile karşılaştırmak amacıyla bir yapı analizi
gerçekleştirdik ve ağımızın çoğu gerçek hayat ağının sergilediği ortak
karakteristik özelliklere sahip olduğunu gösterdik.

References

  • ÖSYS. 2018. ÖSYS: Öğrenci Seçme ve Yerleştirme Sistemi. http://www.osym.gov.tr/TR,8832/hakkinda.html (Erişim Tarihi: 30.06.2018).
  • Briggs S., Wilson A. 2007. Which university? A study of the influence of cost and information factors on Scottish undergraduate choice, Journal of Higher Education Policy and Management, 29 (1): 57-72.
  • Daily C.M., Farewell S., Kumar G. 2010. Factors Influencing the University Selection of International Students, Academy of Educational Leadership Journal, 14 (3): 59-75.
  • Abubakar B., Shanka T., Muuka G.N. 2010. Tertiary education: an investigation of location selection criteria and preferences by international students–The case of two Australian universities, Journal of Marketing for Higher Education, 20 (1): 49-68.
  • Ağaoğlu M., Yurtkoru E.S. 2013. A Research on Students' University and Program Preference Criteria, Öneri Dergisi, 10 (40): 115-124.
  • Özgüven N. 2011. Vakıf Üniversitesi Tercihinin Analitik Hiyerarşik Süreci ile Belirlenmesi, Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (30): 279-290.
  • YÖK Atlas. 2018. Yükseköğretim Program Atlası. https://yokatlas.yok.gov.tr/ (Erişim Tarihi: 30.06.2018).
  • Salunke S.S. 2014. Selenium Webdriver in Python: Learn with Examples, CreateSpace Independent Publishing Platform. 86s.
  • lxml. 2018. lxml - XML and HTML with Python. https://lxml.de/ (Erişim Tarihi: 30.06.2018).
  • Zweig K.A. 2016. Network Analysis Literacy: A Practical Approach to the Analysis of Networks, Springer-Verlag. 535s. Austria.
  • Tunalı V. 2016. Sosyal Ağ Analizine Giriş, Nobel Akademik Yayıncılık. 200s. Ankara.
  • Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. 2003. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, Genome Research, 13 (11): 2498-2504.
  • Hansen D.L., Shneiderman B., Smith M.A. 2011. Analyzing Social Media Networks with NodeXL: Insights from a Connected World, Morgan Kaufmann. Boston.
  • Fruchterman T.M.J., Reingold E.M. 1991. Graph Drawing by Force-directed Placement, Software: Practice and Experience, 21 (11): 1129-1164.
  • Erdös P., Rényi A. 1959. On Random Graphs, Publicationes Mathematicae Debrecen, 6: 290-297.
  • Clauset A., Newman M., Moore C. 2004. Finding community structure in very large networks, Physical Review E, 70 (6): 66-111.
  • Wakita K., Tsurumi T. 2007. Finding community structure in mega-scale social networks: [extended abstract], 16th international conference on World Wide Web, pp1275-1276, Banff, Alberta, Canada.
There are 17 citations in total.

Details

Primary Language English
Journal Section Araştırma Makalesi
Authors

Volkan Tunalı

Erdal Güvenoğlu

Publication Date March 12, 2019
Submission Date July 26, 2018
Acceptance Date November 14, 2018
Published in Issue Year 2019 Volume: 8 Issue: 1

Cite

IEEE V. Tunalı and E. Güvenoğlu, “Complex Network Analysis Approach to Examining Undergraduate Program Preferences”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 1, pp. 176–186, 2019, doi: 10.17798/bitlisfen.448039.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS