Research Article
BibTex RIS Cite

Investigating the Effect of Geometrical and Dynamic Parameters on the Performance of Darrieus Turbines: A Numerical Optimization Approach via QBlade Algorithm

Year 2020, Volume: 9 Issue: 1, 413 - 426, 13.03.2020
https://doi.org/10.17798/bitlisfen.677137

Abstract

Artan enerji talebi, kişi başına düşen enerji kullanımı, çevresel problemler ve bunlara bağlı diğer olumsuz sonuçlar bilim insanlarını ve mühendisleri yenilenebilir enerji sistemlerinin verimliliği konusunda daha fazla çalışma yapmaya sevk etmiştir. Serbest akışlı (rüzgar ve hidrokinetik) türbinler, üzerinde en çok araştırma yapılan yenilenebilir enerji teknolojileri olup Darrieus türbinleri özellikle küçük ölçekli ve lokal uygulamalarda önemli bir yere sahiptir. Darrieus türbinlerinin performansı hakkında birçok deneysel ve hesaplamalı çalışma yapılmış olmasına rağmen, zaman ve maliyet açısından nispeten çok daha elverişli olan numerik çalışmaların sayısı oldukça sınırlıdır. Bu çalışmanın temel amacı, farklı geometrik ve dinamik konfigürasyonlara sahip Darrieus türbinlerinin QBlade yazılımı kullanılarak analiz edilmesidir. Mevcut çalışmada, düz kanatlı Darrieus türbinlerinden daha yüksek performans elde edilmesi amacı ile kanat profili, kanat kalınlığı, kanat sayısı, kord uzunluğu, solidite ve sarmallığın performansa etkisi analiz edilmiştir. Bu çalışmada NACA 0020 profilinin, dikey eksen türbinlerde diğer simetrik kanat kesitlerine nazaran daha iyi performans gösterdiği bulunmuştur. Üç kanatlı türbinlerin ise daha iyi performans gösterdiği ve daha geniş TSR aralığında çalıştığı sonucuna varılmıştır. Ayrıca, kord uzunluğu arttıkça maksimum güç katsayısına daha düşük uç hız oranında (TSR) ulaşıldığı tespit edilmiştir. Bu çalışmanın hem rüzgâr hem de hidrokinetik uygulamalar için farklı boyut ve dinamik ölçeklere sahip Darrieus türbini tasarımı çalışmalarına katkıda bulunması beklenmektedir.

References

  • [1] M. H. Mohamed, “Performance investigation of H-rotor Darrieus turbine with new airfoil shapes,” Energy, vol. 47, no. 1, pp. 522–530, 2012, doi: 10.1016/j.energy.2012.08.044.
  • [2] A. Mejbri, S. Haddou, and J. Ben Rejeb, “Renewable energy, fossil fuels and economic development: Evidence from the Middle East and North African countries,” J. Energy Dev., vol. 40, no. 1/2, pp. 209–228, 2014.
  • [3] F. Martins, C. Felgueiras, and M. Smitková, “Fossil fuel energy consumption in European countries,” Energy Procedia, vol. 153, pp. 107–111, Oct. 2018, doi: 10.1016/J.EGYPRO.2018.10.050.
  • [4] REN21, Renewables 2019 Global Status Report. Paris, 2019.
  • [5] Y. A. Çengel and J. M. Cımbala, Fundamentals and Application of Fluids of Mechanics, 1. edition. İzmir: İzmir Güven Kitabevi, 2012.
  • [6] S. J. Williamson, B. H. Stark, and J. D. Booker, “Low head pico hydro turbine selection using a multi-criteria analysis,” Renew. Energy, vol. 61, pp. 43–50, Jan. 2014, doi: 10.1016/J.RENENE.2012.06.020.
  • [7] D. K. Okot, “Review of small hydropower technology,” Renew. Sustain. Energy Rev., vol. 26, pp. 515–520, Oct. 2013, doi: 10.1016/J.RSER.2013.05.006.
  • [8] A. H. Elbatran, O. B. Yaakob, Y. M. Ahmed, and H. M. Shabara, “Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review,” Renew. Sustain. Energy Rev., vol. 43, pp. 40–50, Mar. 2015, doi: 10.1016/J.RSER.2014.11.045.
  • [9] M. I. Yuce and A. Muratoglu, “Hydrokinetic energy conversion systems: A technology status review,” Renew. Sustain. Energy Rev., vol. 43, pp. 72–82, 2015, doi: 10.1016/j.rser.2014.10.037.
  • [10] A. Muratoglu and M. I. Yuce, “Design of a River Hydrokinetic Turbine Using Optimization and CFD Simulations,” J. Energy Eng., vol. 143, no. 4, 2017, doi: 10.1061/(ASCE)EY.1943-7897.0000438.
  • [11] W. M. J. Batten, A. S. Bahaj, A. F. Molland, and J. R. Chaplin, “Hydrodynamics of marine current turbines,” Renew. Energy, vol. 31, no. 2, pp. 249–256, Feb. 2006, doi: 10.1016/j.renene.2005.08.020.
  • [12] M. M. Aslam Bhutta, N. Hayat, A. U. Farooq, Z. Ali, S. R. Jamil, and Z. Hussain, “Vertical axis wind turbine – A review of various configurations and design techniques,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 1926–1939, May 2012, doi: 10.1016/J.RSER.2011.12.004.
  • [13] A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja, and V. H. Krishna, “A review on small scale wind turbines,” Renew. Sustain. Energy Rev., vol. 56, pp. 1351–1371, Apr. 2016, doi: 10.1016/J.RSER.2015.12.027.
  • [14] A. N. Gorban’, A. M. Gorlov, and V. M. Silantyev, “Limits of the Turbine Efficiency for Free Fluid Flow ,” J. Energy Resour. Technol., vol. 123, no. 4, pp. 311–317, Aug. 2001, doi: 10.1115/1.1414137.
  • [15] L. Chen, F. L. Ponta, and L. I. Lago, “Perspectives on innovative concepts in wind-power generation,” Energy Sustain. Dev., vol. 15, no. 4, pp. 398–410, Dec. 2011, doi: 10.1016/J.ESD.2011.06.006.
  • [16] C. Shonhiwa and G. Makaka, “Concentrator Augmented Wind Turbines: A review,” Renewable and Sustainable Energy Reviews, vol. 59. Pergamon, pp. 1415–1418, 01-Jun-2016, doi: 10.1016/j.rser.2016.01.067.
  • [17] A. Muratoglu, “A review on alternative hydropower production methods,” J. Eng. Tecnol., vol. 2, pp. 21–28, 2018.
  • [18] M. J. Khan, G. Bhuyan, M. T. Iqbal, and J. E. Quaicoe, “Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review,” Appl. Energy, vol. 86, no. 10, pp. 1823–1835, Oct. 2009, doi: 10.1016/J.APENERGY.2009.02.017.
  • [19] D. Forbush, R. J. Cavagnaro, and B. Polagye, “Power-tracking control for cross-flow turbines,” J. Renew. Sustain. Energy, vol. 11, no. 1, p. 014501, Jan. 2019, doi: 10.1063/1.5075634.
  • [20] F. Balduzzi, A. Bianchini, E. A. Carnevale, L. Ferrari, and S. Magnani, “Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building,” Appl. Energy, vol. 97, pp. 921–929, Sep. 2012, doi: 10.1016/J.APENERGY.2011.12.008.
  • [21] D. Kim and M. Gharib, “Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector,” J. Wind Eng. Ind. Aerodyn., vol. 115, pp. 48–52, Apr. 2013, doi: 10.1016/J.JWEIA.2013.01.009.
  • [22] M. Raciti Castelli, G. Ardizzon, L. Battisti, E. Benini, and G. Pavesi, “Modeling Strategy and Numerical Validation for a Darrieus Vertical Axis Micro-Wind Turbine.” pp. 409–418, 12-Nov-2010, doi: 10.1115/IMECE2010-39548.
  • [23] M. Gorlov, “The helical turbine: A new idea for low-head hydro,” Hydro Rev., vol. 14, no. 5, 1995.
  • [24] I. Paraschivoiu, Wind turbine design: with emphasis on Darrieus concept. Canada: Polytechnic International Press, 2002.
  • [25] S. Bernad, A. Georgescu, S.-C. Georgescu, R. Susan-Resiga, and I. Anton, “Flow investigations in Achard turbine,” Proc. Rom. Acad., vol. 9, no. 2, p. 0, 2008.
  • [26] A. M. Gorlov, “Universal spherical turbine with skewed axis of rotation,” US20120070294A1, 2012.
  • [27] M. Mosbahi, A. Ayadi, I. Mabrouki, Z. Driss, T. Tucciarelli, and M. S. Abid, “Effect of the Converging Pipe on the Performance of a Lucid Spherical Rotor,” Arab. J. Sci. Eng., vol. 44, no. 2, pp. 1583–1600, Feb. 2019, doi: 10.1007/s13369-018-3625-0.
  • [28] B. K. Kirke and L. Lazauskas, “Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch,” Renew. Energy, vol. 36, no. 3, pp. 893–897, Mar. 2011, doi: 10.1016/j.renene.2010.08.027.
  • [29] S. Kiho, M. Shiono, and K. Suzuki, “The power generation from tidal currents by darrieus turbine,” Renew. Energy, vol. 9, no. 1–4, pp. 1242–1245, Sep. 1996, doi: 10.1016/0960-1481(96)88501-6.
  • [30] M. H. Mohamed, “Performance investigation of H-rotor Darrieus turbine with new airfoil shapes,” Energy, vol. 47, no. 1, pp. 522–530, Nov. 2012, doi: 10.1016/J.ENERGY.2012.08.044.
  • [31] P. Bachant and M. Wosnik, “Characterising the near-wake of a cross-flow turbine,” J. Turbul., vol. 16, no. 4, pp. 392–410, Apr. 2015, doi: 10.1080/14685248.2014.1001852.
  • [32] M. A. Al-Dabbagh and M. I. Yuce, “Simulation and Comparison of Helical and Straight-bladed Hydrokinetic Turbines,” Int. J. Renew. Energy Res., vol. 8, no. 1, pp. 504–513, Mar. 2018.
  • [33] B. K. Kirke, “Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines,” Renew. Energy, vol. 36, no. 11, pp. 3013–3022, 2011, doi: 10.1016/j.renene.2011.03.036.
  • [34] Q. Cheng, X. Liu, H. S. Ji, K. C. Kim, and B. Yang, “Aerodynamic Analysis of a Helical Vertical Axis Wind Turbine,” Energies, vol. 10, no. 4, 2017, doi: 10.3390/en10040575.
  • [35] L. Du, G. Ingram, and R. G. Dominy, “Experimental study of the effects of turbine solidity, blade profile, pitch angle, surface roughness, and aspect ratio on the H-Darrieus wind turbine self-starting and overall performance,” Energy Sci. Eng., vol. 0, no. 0, 2019, doi: 10.1002/ese3.430.
  • [36] A. Rezaeiha, H. Montazeri, and B. Blocken, “On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines,” Energy, vol. 180, pp. 838–857, Aug. 2019, doi: 10.1016/J.ENERGY.2019.05.053.
  • [37] A. R. Sengupta, A. Biswas, and R. Gupta, “Comparison of low wind speed aerodynamics of unsymmetrical blade H-Darrieus rotors-blade camber and curvature signatures for performance improvement,” Renew. Energy, vol. 139, pp. 1412–1427, Aug. 2019, doi: 10.1016/J.RENENE.2019.03.054.
  • [38] L. Battisti et al., “Experimental benchmark data for H-shaped and troposkien VAWT architectures,” Renew. Energy, vol. 125, pp. 425–444, Sep. 2018, doi: 10.1016/J.RENENE.2018.02.098.
  • [39] M. Scungio, F. Arpino, V. Focanti, M. Profili, and M. Rotondi, “Wind tunnel testing of scaled models of a newly developed Darrieus-style vertical axis wind turbine with auxiliary straight blades,” Energy Convers. Manag., vol. 130, pp. 60–70, Dec. 2016, doi: 10.1016/J.ENCONMAN.2016.10.033.
  • [40] M. H. Mohamed, A. Dessoky, and F. Alqurashi, “Blade shape effect on the behavior of the H-rotor Darrieus wind turbine: Performance investigation and force analysis,” Energy, vol. 179, pp. 1217–1234, Jul. 2019, doi: 10.1016/J.ENERGY.2019.05.069.
  • [41] T. J. Carrigan, B. H. Dennis, Z. X. Han, and B. P. Wang, “Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution,” ISRN Renew. Energy, vol. 2012, pp. 1–16, Jan. 2012, doi: 10.5402/2012/528418.
  • [42] M. Ghasemian, Z. N. Ashrafi, and A. Sedaghat, “A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines,” Energy Convers. Manag., vol. 149, pp. 87–100, Oct. 2017, doi: 10.1016/J.ENCONMAN.2017.07.016.
  • [43] A. Muratoğlu and M. S. Demir, “Numerical analyses of a straight bladed vertical axis Darrieus wind turbine: Verification of DMS algorithm and Qblade code” Eur. J. Tech., vol. 9, no. 2, pp. 195–208, Dec. 2019, doi: 10.36222/ejt.643483.
  • [44] D. Marten, J. Wendler, G. Pechlivanoglou, C. N. Nayeri, and C. O. Paschereit, “Qblade: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines,” Int. J. Emerg. Technol. Adv. Eng., vol. 3, no. 3, pp. 264–269, 2013.
  • [45] Qblade, “Wind turbine design and simulation,” Hermann Föttinger Institute of TU Berlin. 2018.
  • [46] M. Drela, “Xfoil: Subsonic Airfoil Development System,” MIT. 2013.
  • [47] M. H. Worstell, “Aerodynamic Performance of the DOE/Sandia 17-m-Diameter Vertical-Axis Wind Turbine,” J. Energy, vol. 5, no. 1, pp. 39–42, 1981, doi: 10.2514/3.62496.
  • [48] I. Paraschivoiu and F. Delclaux, “Double multiple streamtube model with recent improvements (for predicting aerodynamic loads and performance of Darrieus vertical axis wind turbines),” J. Energy, vol. 7, no. 3, pp. 250–255, 1983, doi: 10.2514/3.48077.
  • [49] D. Marten, J. Wendler, G. Pechlivanoglou, C. N. Nayeri, and C. O. Paschereit, “Development and Application of a Simulation Tool For Vertical and Horizontal Axis Wind Turbines,” Proc. ASME Turbo Expo, vol. 8, no. June, 2013, doi: 10.1115/GT2013-94979.
  • [50] C. A. Consul, “Hydrodynamic Analysis of a Tidal Cross-Flow Turbine,” Oxford, 2011.
  • [51] P. Bachant, “Experimental investigation of helical cross-flow axis hydrokinetic turbines, including effects of waves and turbulence,” University of New Hampshire, 2011.
  • [52] A. Muratoglu, “Design and simulation of a riverine hydrokinetic turbine,” University of Gaziantep, 2014.
  • [53] M. S. Demir, “Design and CFD analyses of a spherical hydrokinetic turbine for energy production in gravity water transmission pipelines,” Batman University, 2019.
  • [54] lon Paraschivoiu, “Aerodynamic loads and performance of the Darrieus rotor,” J. Energy, vol. 6, no. 6, pp. 406–412, 1982.
  • [55] I. Hashem and M. H. Mohamed, “Aerodynamic performance enhancements of H-rotor Darrieus wind turbine,” Energy, vol. 142, pp. 531–545, Jan. 2018, doi: 10.1016/J.ENERGY.2017.10.036.
  • [56] F. Feng, S. Zhao, C. Qu, Y. Bai, Y. Zhang, and Y. Li, “Research on Aerodynamic Characteristics of Straight-Bladed Vertical Axis Wind Turbine with S Series Airfoils,” Int. J. Rotating Mach., vol. 2018, 2018, doi: 10.1155/2018/8350243.
  • [57] A. Subramanian et al., “Effect Of Airfoil and Solidity On Performance Of Small Scale Vertical Axis Wind Turbine Using Three Dimensional CFD Model,” Energy, vol. 133, pp. 179–190, 2017, doi: 10.1016/j.energy.2017.05.118.
  • [58] A. Rezaeiha, H. Montazeri, and B. Blocken, “Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades,” Energy, vol. 165, pp. 1129–1148, Dec. 2018, doi: 10.1016/J.ENERGY.2018.09.192.
  • [59] M. H. Mohamed, “Performance investigation of H-rotor Darrieus turbine with new airfoil shapes,” Energy, vol. 47, no. 1, pp. 522–530, Nov. 2012, doi: 10.1016/J.ENERGY.2012.08.044.
  • [60] D. Brinck and N. Jeremejeff, “The development of a vertical axis tidal current turbine,” KTH School of Industrial Engineering and Management, 2013.
  • [61] S. Brusca, R. Lanzafame, and M. Messina, “Design and performance of a straight-bladed darrieus wind turbine Design and Performance of a Straight-Bladed Darrieus Wind Turbine,” Int. J. Appl. Eng. Res., vol. 10, no. September, pp. 3979–3982, 2015.
  • [62] S. B. Qamar and I. Janajreh, “A Comprehensive Analysis Of Solidity For Cambered Darrieus VAWTs,” Int. J. Hydrogen Energy, vol. 42, no. 30, pp. 19420–19431, 2017, doi: 10.1016/j.ijhydene.2017.06.041.
  • [63] P. L. Delafin, T. Nishino, L. Wang, and A. Kolios, “Effect Of The Number Of Blades And Solidity On The Performance Of a Vertical Axis Wind Turbine,” J. Phys. Conf. Ser., vol. 753, no. 2, 2016, doi: 10.1088/1742-6596/753/2/022033.
  • [64] O. Eboibi, L. A. M. Danao, and R. J. Howell, “Experimental Investigation of The Influence of Solidity On The Performance and Flow Field Aerodynamics of Vertical Axis Wind Turbines at Low Reynolds Numbers,” Renew. Energy, vol. 92, pp. 474–483, 2016, doi: 10.1016/j.renene.2016.02.028.
  • [65] S.-C. Roh and S.-H. Kang, “Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine,” J. Mech. Sci. Technol., vol. 27, no. 11, pp. 3299–3307, 2013, doi: 10.1007/s12206-013-0852-x.
  • [66] S. R. Sheikh, “Hydrodynamic Design and Optimization of Vertical Axis Water Turbine for Shallow and High Velocity Water Streams of Pakistan,” in UMT National Multidisciplinary Engineering Conference 2015 (NMEC-15), 2015, no. November, pp. 1–18, doi: 10.13140/RG.2.1.3358.1520.
  • [67] J. Winchester and S. Quayle, “Torque Ripple and Variable Blade Force: A Comparison of Darrieus and Gorlov-Type Turbines For Tidal Stream Energy Conversion,” in Proceedings of the 8th European Wave and Tiadal Energy Conference, 2009, pp. 668–676.
  • [68] M. I. Yuce and A. Muratoglu, “Hydrokinetic energy conversion systems: A technology status review,” Renew. Sustain. Energy Rev., vol. 43, pp. 72–82, Mar. 2015, doi: 10.1016/j.rser.2014.10.037.
  • [69] P. Marsh, D. Ranmuthugala, I. Penesis, and G. Thomas, “Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines,” Renew. Energy, vol. 81, pp. 926–935, 2015, doi: 10.1016/j.renene.2015.03.083.
  • [70] M. Moghimi and H. Motawej, “Developed DMST Model For Performance Analysis and Parametric Evaluation of Gorlov Vertical Axis Wind Turbines,” Sustain. Energy Technol. Assessments, vol. 37, no. November 2019, p. 100616, 2020, doi: 10.1016/j.seta.2019.100616.
  • [71] L. Battisti, A. Brighenti, E. Benini, and M. R. Castelli, “Analysis of Different Blade Architectures on Small VAWT Performance,” J. Phys. Conf. Ser., vol. 753, no. 6, 2016, doi: 10.1088/1742-6596/753/6/062009.
  • [72] A. L. Niblick, “Experimental and Analytical Study of Helical Cross-Flow Turbines for a Tidal Micropower Generation System,” Master of Science Thesis, University of Washington, Washington, 2012.

Investigating the Effect of Geometrical and Dynamic Parameters on the Performance of Darrieus Turbines: A Numerical Optimization Approach via QBlade Algorithm

Year 2020, Volume: 9 Issue: 1, 413 - 426, 13.03.2020
https://doi.org/10.17798/bitlisfen.677137

Abstract

Increasing energy demand, rising per capita energy use, growing climate problems and other detrimental consequences of energy and environmental issues have prompted scientists and engineers to conduct more studies on the technical feasibility and efficiency of renewable energy conversion systems. Free flow (wind and hydrokinetic) turbines are one of the mostly investigated renewable energy technologies and Darrieus turbines have an exceptional place especially for smaller scale and domestic applications. Many experimental and computational studies have been provided on the performance of Darrieus turbines. However, the number of numerical studies which are more time and cost effective than computational and experimental works are quite limited in the literature. The main objective of this study is to analyze Darrieus turbines at different geometrical and dynamic configurations using numerical QBlade software. In this study, the effect of airfoil selection, thickness, number of blades, chord length, solidity and helicity are analyzed in terms of delivering higher performance at straight bladed Darrieus turbines. It has been found that NACA 0020 profile performs better relative to other symmetrical blade sections in vertical axis turbines. Better performance and wider TSR range is obtained for three bladed turbines. Also, increasing chord lengths delivered maximum power at lower tip speed ratio (TSR) ranges. This study is expected contribute site-dependent Darrieus turbine design works at different dimension and dynamic scales for both wind and hydrokinetic applications.

References

  • [1] M. H. Mohamed, “Performance investigation of H-rotor Darrieus turbine with new airfoil shapes,” Energy, vol. 47, no. 1, pp. 522–530, 2012, doi: 10.1016/j.energy.2012.08.044.
  • [2] A. Mejbri, S. Haddou, and J. Ben Rejeb, “Renewable energy, fossil fuels and economic development: Evidence from the Middle East and North African countries,” J. Energy Dev., vol. 40, no. 1/2, pp. 209–228, 2014.
  • [3] F. Martins, C. Felgueiras, and M. Smitková, “Fossil fuel energy consumption in European countries,” Energy Procedia, vol. 153, pp. 107–111, Oct. 2018, doi: 10.1016/J.EGYPRO.2018.10.050.
  • [4] REN21, Renewables 2019 Global Status Report. Paris, 2019.
  • [5] Y. A. Çengel and J. M. Cımbala, Fundamentals and Application of Fluids of Mechanics, 1. edition. İzmir: İzmir Güven Kitabevi, 2012.
  • [6] S. J. Williamson, B. H. Stark, and J. D. Booker, “Low head pico hydro turbine selection using a multi-criteria analysis,” Renew. Energy, vol. 61, pp. 43–50, Jan. 2014, doi: 10.1016/J.RENENE.2012.06.020.
  • [7] D. K. Okot, “Review of small hydropower technology,” Renew. Sustain. Energy Rev., vol. 26, pp. 515–520, Oct. 2013, doi: 10.1016/J.RSER.2013.05.006.
  • [8] A. H. Elbatran, O. B. Yaakob, Y. M. Ahmed, and H. M. Shabara, “Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review,” Renew. Sustain. Energy Rev., vol. 43, pp. 40–50, Mar. 2015, doi: 10.1016/J.RSER.2014.11.045.
  • [9] M. I. Yuce and A. Muratoglu, “Hydrokinetic energy conversion systems: A technology status review,” Renew. Sustain. Energy Rev., vol. 43, pp. 72–82, 2015, doi: 10.1016/j.rser.2014.10.037.
  • [10] A. Muratoglu and M. I. Yuce, “Design of a River Hydrokinetic Turbine Using Optimization and CFD Simulations,” J. Energy Eng., vol. 143, no. 4, 2017, doi: 10.1061/(ASCE)EY.1943-7897.0000438.
  • [11] W. M. J. Batten, A. S. Bahaj, A. F. Molland, and J. R. Chaplin, “Hydrodynamics of marine current turbines,” Renew. Energy, vol. 31, no. 2, pp. 249–256, Feb. 2006, doi: 10.1016/j.renene.2005.08.020.
  • [12] M. M. Aslam Bhutta, N. Hayat, A. U. Farooq, Z. Ali, S. R. Jamil, and Z. Hussain, “Vertical axis wind turbine – A review of various configurations and design techniques,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 1926–1939, May 2012, doi: 10.1016/J.RSER.2011.12.004.
  • [13] A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja, and V. H. Krishna, “A review on small scale wind turbines,” Renew. Sustain. Energy Rev., vol. 56, pp. 1351–1371, Apr. 2016, doi: 10.1016/J.RSER.2015.12.027.
  • [14] A. N. Gorban’, A. M. Gorlov, and V. M. Silantyev, “Limits of the Turbine Efficiency for Free Fluid Flow ,” J. Energy Resour. Technol., vol. 123, no. 4, pp. 311–317, Aug. 2001, doi: 10.1115/1.1414137.
  • [15] L. Chen, F. L. Ponta, and L. I. Lago, “Perspectives on innovative concepts in wind-power generation,” Energy Sustain. Dev., vol. 15, no. 4, pp. 398–410, Dec. 2011, doi: 10.1016/J.ESD.2011.06.006.
  • [16] C. Shonhiwa and G. Makaka, “Concentrator Augmented Wind Turbines: A review,” Renewable and Sustainable Energy Reviews, vol. 59. Pergamon, pp. 1415–1418, 01-Jun-2016, doi: 10.1016/j.rser.2016.01.067.
  • [17] A. Muratoglu, “A review on alternative hydropower production methods,” J. Eng. Tecnol., vol. 2, pp. 21–28, 2018.
  • [18] M. J. Khan, G. Bhuyan, M. T. Iqbal, and J. E. Quaicoe, “Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review,” Appl. Energy, vol. 86, no. 10, pp. 1823–1835, Oct. 2009, doi: 10.1016/J.APENERGY.2009.02.017.
  • [19] D. Forbush, R. J. Cavagnaro, and B. Polagye, “Power-tracking control for cross-flow turbines,” J. Renew. Sustain. Energy, vol. 11, no. 1, p. 014501, Jan. 2019, doi: 10.1063/1.5075634.
  • [20] F. Balduzzi, A. Bianchini, E. A. Carnevale, L. Ferrari, and S. Magnani, “Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building,” Appl. Energy, vol. 97, pp. 921–929, Sep. 2012, doi: 10.1016/J.APENERGY.2011.12.008.
  • [21] D. Kim and M. Gharib, “Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector,” J. Wind Eng. Ind. Aerodyn., vol. 115, pp. 48–52, Apr. 2013, doi: 10.1016/J.JWEIA.2013.01.009.
  • [22] M. Raciti Castelli, G. Ardizzon, L. Battisti, E. Benini, and G. Pavesi, “Modeling Strategy and Numerical Validation for a Darrieus Vertical Axis Micro-Wind Turbine.” pp. 409–418, 12-Nov-2010, doi: 10.1115/IMECE2010-39548.
  • [23] M. Gorlov, “The helical turbine: A new idea for low-head hydro,” Hydro Rev., vol. 14, no. 5, 1995.
  • [24] I. Paraschivoiu, Wind turbine design: with emphasis on Darrieus concept. Canada: Polytechnic International Press, 2002.
  • [25] S. Bernad, A. Georgescu, S.-C. Georgescu, R. Susan-Resiga, and I. Anton, “Flow investigations in Achard turbine,” Proc. Rom. Acad., vol. 9, no. 2, p. 0, 2008.
  • [26] A. M. Gorlov, “Universal spherical turbine with skewed axis of rotation,” US20120070294A1, 2012.
  • [27] M. Mosbahi, A. Ayadi, I. Mabrouki, Z. Driss, T. Tucciarelli, and M. S. Abid, “Effect of the Converging Pipe on the Performance of a Lucid Spherical Rotor,” Arab. J. Sci. Eng., vol. 44, no. 2, pp. 1583–1600, Feb. 2019, doi: 10.1007/s13369-018-3625-0.
  • [28] B. K. Kirke and L. Lazauskas, “Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch,” Renew. Energy, vol. 36, no. 3, pp. 893–897, Mar. 2011, doi: 10.1016/j.renene.2010.08.027.
  • [29] S. Kiho, M. Shiono, and K. Suzuki, “The power generation from tidal currents by darrieus turbine,” Renew. Energy, vol. 9, no. 1–4, pp. 1242–1245, Sep. 1996, doi: 10.1016/0960-1481(96)88501-6.
  • [30] M. H. Mohamed, “Performance investigation of H-rotor Darrieus turbine with new airfoil shapes,” Energy, vol. 47, no. 1, pp. 522–530, Nov. 2012, doi: 10.1016/J.ENERGY.2012.08.044.
  • [31] P. Bachant and M. Wosnik, “Characterising the near-wake of a cross-flow turbine,” J. Turbul., vol. 16, no. 4, pp. 392–410, Apr. 2015, doi: 10.1080/14685248.2014.1001852.
  • [32] M. A. Al-Dabbagh and M. I. Yuce, “Simulation and Comparison of Helical and Straight-bladed Hydrokinetic Turbines,” Int. J. Renew. Energy Res., vol. 8, no. 1, pp. 504–513, Mar. 2018.
  • [33] B. K. Kirke, “Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines,” Renew. Energy, vol. 36, no. 11, pp. 3013–3022, 2011, doi: 10.1016/j.renene.2011.03.036.
  • [34] Q. Cheng, X. Liu, H. S. Ji, K. C. Kim, and B. Yang, “Aerodynamic Analysis of a Helical Vertical Axis Wind Turbine,” Energies, vol. 10, no. 4, 2017, doi: 10.3390/en10040575.
  • [35] L. Du, G. Ingram, and R. G. Dominy, “Experimental study of the effects of turbine solidity, blade profile, pitch angle, surface roughness, and aspect ratio on the H-Darrieus wind turbine self-starting and overall performance,” Energy Sci. Eng., vol. 0, no. 0, 2019, doi: 10.1002/ese3.430.
  • [36] A. Rezaeiha, H. Montazeri, and B. Blocken, “On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines,” Energy, vol. 180, pp. 838–857, Aug. 2019, doi: 10.1016/J.ENERGY.2019.05.053.
  • [37] A. R. Sengupta, A. Biswas, and R. Gupta, “Comparison of low wind speed aerodynamics of unsymmetrical blade H-Darrieus rotors-blade camber and curvature signatures for performance improvement,” Renew. Energy, vol. 139, pp. 1412–1427, Aug. 2019, doi: 10.1016/J.RENENE.2019.03.054.
  • [38] L. Battisti et al., “Experimental benchmark data for H-shaped and troposkien VAWT architectures,” Renew. Energy, vol. 125, pp. 425–444, Sep. 2018, doi: 10.1016/J.RENENE.2018.02.098.
  • [39] M. Scungio, F. Arpino, V. Focanti, M. Profili, and M. Rotondi, “Wind tunnel testing of scaled models of a newly developed Darrieus-style vertical axis wind turbine with auxiliary straight blades,” Energy Convers. Manag., vol. 130, pp. 60–70, Dec. 2016, doi: 10.1016/J.ENCONMAN.2016.10.033.
  • [40] M. H. Mohamed, A. Dessoky, and F. Alqurashi, “Blade shape effect on the behavior of the H-rotor Darrieus wind turbine: Performance investigation and force analysis,” Energy, vol. 179, pp. 1217–1234, Jul. 2019, doi: 10.1016/J.ENERGY.2019.05.069.
  • [41] T. J. Carrigan, B. H. Dennis, Z. X. Han, and B. P. Wang, “Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution,” ISRN Renew. Energy, vol. 2012, pp. 1–16, Jan. 2012, doi: 10.5402/2012/528418.
  • [42] M. Ghasemian, Z. N. Ashrafi, and A. Sedaghat, “A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines,” Energy Convers. Manag., vol. 149, pp. 87–100, Oct. 2017, doi: 10.1016/J.ENCONMAN.2017.07.016.
  • [43] A. Muratoğlu and M. S. Demir, “Numerical analyses of a straight bladed vertical axis Darrieus wind turbine: Verification of DMS algorithm and Qblade code” Eur. J. Tech., vol. 9, no. 2, pp. 195–208, Dec. 2019, doi: 10.36222/ejt.643483.
  • [44] D. Marten, J. Wendler, G. Pechlivanoglou, C. N. Nayeri, and C. O. Paschereit, “Qblade: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines,” Int. J. Emerg. Technol. Adv. Eng., vol. 3, no. 3, pp. 264–269, 2013.
  • [45] Qblade, “Wind turbine design and simulation,” Hermann Föttinger Institute of TU Berlin. 2018.
  • [46] M. Drela, “Xfoil: Subsonic Airfoil Development System,” MIT. 2013.
  • [47] M. H. Worstell, “Aerodynamic Performance of the DOE/Sandia 17-m-Diameter Vertical-Axis Wind Turbine,” J. Energy, vol. 5, no. 1, pp. 39–42, 1981, doi: 10.2514/3.62496.
  • [48] I. Paraschivoiu and F. Delclaux, “Double multiple streamtube model with recent improvements (for predicting aerodynamic loads and performance of Darrieus vertical axis wind turbines),” J. Energy, vol. 7, no. 3, pp. 250–255, 1983, doi: 10.2514/3.48077.
  • [49] D. Marten, J. Wendler, G. Pechlivanoglou, C. N. Nayeri, and C. O. Paschereit, “Development and Application of a Simulation Tool For Vertical and Horizontal Axis Wind Turbines,” Proc. ASME Turbo Expo, vol. 8, no. June, 2013, doi: 10.1115/GT2013-94979.
  • [50] C. A. Consul, “Hydrodynamic Analysis of a Tidal Cross-Flow Turbine,” Oxford, 2011.
  • [51] P. Bachant, “Experimental investigation of helical cross-flow axis hydrokinetic turbines, including effects of waves and turbulence,” University of New Hampshire, 2011.
  • [52] A. Muratoglu, “Design and simulation of a riverine hydrokinetic turbine,” University of Gaziantep, 2014.
  • [53] M. S. Demir, “Design and CFD analyses of a spherical hydrokinetic turbine for energy production in gravity water transmission pipelines,” Batman University, 2019.
  • [54] lon Paraschivoiu, “Aerodynamic loads and performance of the Darrieus rotor,” J. Energy, vol. 6, no. 6, pp. 406–412, 1982.
  • [55] I. Hashem and M. H. Mohamed, “Aerodynamic performance enhancements of H-rotor Darrieus wind turbine,” Energy, vol. 142, pp. 531–545, Jan. 2018, doi: 10.1016/J.ENERGY.2017.10.036.
  • [56] F. Feng, S. Zhao, C. Qu, Y. Bai, Y. Zhang, and Y. Li, “Research on Aerodynamic Characteristics of Straight-Bladed Vertical Axis Wind Turbine with S Series Airfoils,” Int. J. Rotating Mach., vol. 2018, 2018, doi: 10.1155/2018/8350243.
  • [57] A. Subramanian et al., “Effect Of Airfoil and Solidity On Performance Of Small Scale Vertical Axis Wind Turbine Using Three Dimensional CFD Model,” Energy, vol. 133, pp. 179–190, 2017, doi: 10.1016/j.energy.2017.05.118.
  • [58] A. Rezaeiha, H. Montazeri, and B. Blocken, “Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades,” Energy, vol. 165, pp. 1129–1148, Dec. 2018, doi: 10.1016/J.ENERGY.2018.09.192.
  • [59] M. H. Mohamed, “Performance investigation of H-rotor Darrieus turbine with new airfoil shapes,” Energy, vol. 47, no. 1, pp. 522–530, Nov. 2012, doi: 10.1016/J.ENERGY.2012.08.044.
  • [60] D. Brinck and N. Jeremejeff, “The development of a vertical axis tidal current turbine,” KTH School of Industrial Engineering and Management, 2013.
  • [61] S. Brusca, R. Lanzafame, and M. Messina, “Design and performance of a straight-bladed darrieus wind turbine Design and Performance of a Straight-Bladed Darrieus Wind Turbine,” Int. J. Appl. Eng. Res., vol. 10, no. September, pp. 3979–3982, 2015.
  • [62] S. B. Qamar and I. Janajreh, “A Comprehensive Analysis Of Solidity For Cambered Darrieus VAWTs,” Int. J. Hydrogen Energy, vol. 42, no. 30, pp. 19420–19431, 2017, doi: 10.1016/j.ijhydene.2017.06.041.
  • [63] P. L. Delafin, T. Nishino, L. Wang, and A. Kolios, “Effect Of The Number Of Blades And Solidity On The Performance Of a Vertical Axis Wind Turbine,” J. Phys. Conf. Ser., vol. 753, no. 2, 2016, doi: 10.1088/1742-6596/753/2/022033.
  • [64] O. Eboibi, L. A. M. Danao, and R. J. Howell, “Experimental Investigation of The Influence of Solidity On The Performance and Flow Field Aerodynamics of Vertical Axis Wind Turbines at Low Reynolds Numbers,” Renew. Energy, vol. 92, pp. 474–483, 2016, doi: 10.1016/j.renene.2016.02.028.
  • [65] S.-C. Roh and S.-H. Kang, “Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine,” J. Mech. Sci. Technol., vol. 27, no. 11, pp. 3299–3307, 2013, doi: 10.1007/s12206-013-0852-x.
  • [66] S. R. Sheikh, “Hydrodynamic Design and Optimization of Vertical Axis Water Turbine for Shallow and High Velocity Water Streams of Pakistan,” in UMT National Multidisciplinary Engineering Conference 2015 (NMEC-15), 2015, no. November, pp. 1–18, doi: 10.13140/RG.2.1.3358.1520.
  • [67] J. Winchester and S. Quayle, “Torque Ripple and Variable Blade Force: A Comparison of Darrieus and Gorlov-Type Turbines For Tidal Stream Energy Conversion,” in Proceedings of the 8th European Wave and Tiadal Energy Conference, 2009, pp. 668–676.
  • [68] M. I. Yuce and A. Muratoglu, “Hydrokinetic energy conversion systems: A technology status review,” Renew. Sustain. Energy Rev., vol. 43, pp. 72–82, Mar. 2015, doi: 10.1016/j.rser.2014.10.037.
  • [69] P. Marsh, D. Ranmuthugala, I. Penesis, and G. Thomas, “Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines,” Renew. Energy, vol. 81, pp. 926–935, 2015, doi: 10.1016/j.renene.2015.03.083.
  • [70] M. Moghimi and H. Motawej, “Developed DMST Model For Performance Analysis and Parametric Evaluation of Gorlov Vertical Axis Wind Turbines,” Sustain. Energy Technol. Assessments, vol. 37, no. November 2019, p. 100616, 2020, doi: 10.1016/j.seta.2019.100616.
  • [71] L. Battisti, A. Brighenti, E. Benini, and M. R. Castelli, “Analysis of Different Blade Architectures on Small VAWT Performance,” J. Phys. Conf. Ser., vol. 753, no. 6, 2016, doi: 10.1088/1742-6596/753/6/062009.
  • [72] A. L. Niblick, “Experimental and Analytical Study of Helical Cross-Flow Turbines for a Tidal Micropower Generation System,” Master of Science Thesis, University of Washington, Washington, 2012.
There are 72 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Abdullah Muratoğlu 0000-0001-8981-5983

Muhammed Sungur Demir 0000-0003-3631-6325

Publication Date March 13, 2020
Submission Date January 19, 2020
Acceptance Date February 10, 2020
Published in Issue Year 2020 Volume: 9 Issue: 1

Cite

IEEE A. Muratoğlu and M. S. Demir, “Investigating the Effect of Geometrical and Dynamic Parameters on the Performance of Darrieus Turbines: A Numerical Optimization Approach via QBlade Algorithm”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 1, pp. 413–426, 2020, doi: 10.17798/bitlisfen.677137.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS