Research Article
BibTex RIS Cite

Finsler Manifoldunda Genel Helisler Üzerine Bir Çalışma

Year 2020, Volume: 9 Issue: 2, 512 - 517, 15.06.2020
https://doi.org/10.17798/bitlisfen.592924

Abstract

Bu çalışmada, 3-boyutlu Finsler manifoldunda iki özel
eğri arasındaki ilişki üzerine çalıştık. 3-boyutlu Finsler manifoldundaki bir
regüler eğri ve bir genel helis arasındaki bir denklem kullanılarak, regüler
eğri ve genel helis mevcut ise, o zaman regüler eğrinin de bir genel helis
olduğunu gösterdik. Daha sonra bu özel eğrilerin her ikisi için de Bertrand eğri
çifti, slant helis olma koşulu verildi. Böylece 3-boyutlu Finsler manifoldunda
bu eğrilerin bazı karakterizasyonlarını elde ettik.

References

  • Matsumoto M. 1989. A Slope of a Mountain is a Finsler Surface with respect to a Time Measure, Kyoto Journal of Mathematics, 29 (1): 17-25.
  • Antonelli P.L., Ingarden R.S., Matsumoto M. 1993. The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, Dordrecht, Netherlands, 305p.
  • Bao D., Chern S.S., Shen Z. 2000. Introduction to Riemann-Finsler Geometry. Series: Graduate Texts in Mathematics 200, Springer-Verlag New York, 434p.
  • Yin Y., Zhang T., Yang F., Qiu X. 2008. Geometric Conditions for Fractal Supercarbon Nanotubes with Strict Self-Similarities Chaos Solitons and Fractals, 37: 1257-1266.
  • Jain A., Wang G., Vasquez K.M. 2008. DNA Triple Helices: Biological Consequences and Theropeutic Potential. Biochimie, 90 (8): 1117-1130.
  • Camcı Ç., İlarslan K., Kula L., Hacısalihoğlu H.H. 2009. Harmonic Curvatures and Generalized Helices in E^n, Chaos Solitons and Fractals, 4: 2590-2596.
  • Struik D.J. 1988. Lectures on Classical Differential Geometry, Dover, New York, 256p.
  • Sy S. 2001. General Helices and Other Topics in Differential Geometry of Curves, Michigan Technological University, Master Thesis of Science in Mathematics (Printed), 69p.
  • Izumiya S., Takeuchi N. 2002. Generic Properties of Helices and Bertrand Curves, Journal of Geometry, 74: 97-109.
  • Güven İ.A., Kaya S., Yaylı Y. 2010. General Helix and Associated Curve in Minkowski 3-Space, Far East Journal of Mathematical Sciences, 47 (2): 225-233.
  • Yıldırım M.Y., Bektaş M. 2009. Helices of the 3-Dimensional Finsler Manifolds, Journal of Advanced Mathematical Studies, 2 (1): 107-212.
  • Yıldırım M.Y., Bektaş M. 2011. Bertrand Curves on Finsler Break Manifolds, International Journal of Physical and Mathematical Sciences, 5-10.
  • Güven İ.A.,Yaylı Y. 2013. The Helix Relation Between Two Curves, Turkish Journal of Analysis and Number Theory, 1 (1): 23-25.
  • Bejancu A., Farran H.R. 2000. Geometry of Pseudo-Finsler Submanifold, Kluwer Academic Publishers, Dordrecht, Netherlands, 207p.
Year 2020, Volume: 9 Issue: 2, 512 - 517, 15.06.2020
https://doi.org/10.17798/bitlisfen.592924

Abstract

References

  • Matsumoto M. 1989. A Slope of a Mountain is a Finsler Surface with respect to a Time Measure, Kyoto Journal of Mathematics, 29 (1): 17-25.
  • Antonelli P.L., Ingarden R.S., Matsumoto M. 1993. The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, Dordrecht, Netherlands, 305p.
  • Bao D., Chern S.S., Shen Z. 2000. Introduction to Riemann-Finsler Geometry. Series: Graduate Texts in Mathematics 200, Springer-Verlag New York, 434p.
  • Yin Y., Zhang T., Yang F., Qiu X. 2008. Geometric Conditions for Fractal Supercarbon Nanotubes with Strict Self-Similarities Chaos Solitons and Fractals, 37: 1257-1266.
  • Jain A., Wang G., Vasquez K.M. 2008. DNA Triple Helices: Biological Consequences and Theropeutic Potential. Biochimie, 90 (8): 1117-1130.
  • Camcı Ç., İlarslan K., Kula L., Hacısalihoğlu H.H. 2009. Harmonic Curvatures and Generalized Helices in E^n, Chaos Solitons and Fractals, 4: 2590-2596.
  • Struik D.J. 1988. Lectures on Classical Differential Geometry, Dover, New York, 256p.
  • Sy S. 2001. General Helices and Other Topics in Differential Geometry of Curves, Michigan Technological University, Master Thesis of Science in Mathematics (Printed), 69p.
  • Izumiya S., Takeuchi N. 2002. Generic Properties of Helices and Bertrand Curves, Journal of Geometry, 74: 97-109.
  • Güven İ.A., Kaya S., Yaylı Y. 2010. General Helix and Associated Curve in Minkowski 3-Space, Far East Journal of Mathematical Sciences, 47 (2): 225-233.
  • Yıldırım M.Y., Bektaş M. 2009. Helices of the 3-Dimensional Finsler Manifolds, Journal of Advanced Mathematical Studies, 2 (1): 107-212.
  • Yıldırım M.Y., Bektaş M. 2011. Bertrand Curves on Finsler Break Manifolds, International Journal of Physical and Mathematical Sciences, 5-10.
  • Güven İ.A.,Yaylı Y. 2013. The Helix Relation Between Two Curves, Turkish Journal of Analysis and Number Theory, 1 (1): 23-25.
  • Bejancu A., Farran H.R. 2000. Geometry of Pseudo-Finsler Submanifold, Kluwer Academic Publishers, Dordrecht, Netherlands, 207p.
There are 14 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Muradiye Çimdiker 0000-0002-2545-5453

Yasin Ünlütürk 0000-0002-6395-5272

Publication Date June 15, 2020
Submission Date July 17, 2019
Acceptance Date December 17, 2019
Published in Issue Year 2020 Volume: 9 Issue: 2

Cite

IEEE M. Çimdiker and Y. Ünlütürk, “Finsler Manifoldunda Genel Helisler Üzerine Bir Çalışma”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 2, pp. 512–517, 2020, doi: 10.17798/bitlisfen.592924.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS